(1+1)维GSWW方程的新显式精确解
New Explicit Exact Solutions for the (1+1)-Dimensional Generalized Shallow Water Wave Equation

作者: 王鑫 :海南大学信息科学技术学院,海南 海口;

关键词: (1+1)维GSWW方程f(GG')展开法显式精确解(1+1)-Dimensional Generalized Shallow Water Wave Equation f(GG')Expansion Method Explicit Exact Solutions

摘要: 本文以(G'/G)展开法的基本思路为依据,构造了一类f(G,G')形式的展开法,其中的G函数是由一类二阶非线性的常微分方程的显式解得到。用此展开法对(1+1)维GSWW方程进行研究,求得了该方程多种形式的新精确行波解。事实证明,这类f(G,G')展开法对于求得非线性偏微分方程多种形式的显式精确解非常有效。

Abstract: In this paper, based on the basic idea of the (G'/G) expansion method, a class f(G,G') expansion method is constructed, in which the G functions are obtained by explicit solutions of a class of two order nonlinear ordinary differential equations. With this method to research the (1+1)-dimensional generalized shallow water wave equation, many forms of new travelling wave solutions are obtained. It is proved that the f(G,G') expansion method is very effective for obtaining explicit and exact solutions of many forms of nonlinear partial differential equations.

文章引用: 王鑫 (2017) (1+1)维GSWW方程的新显式精确解。 应用数学进展, 6, 787-794. doi: 10.12677/AAM.2017.66095

参考文献

[1] Wang, M.L., Li, X.Z. and Zhang, J.L. (2008) The (G’/G)-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.
https://doi.org/10.1016/j.physleta.2007.07.051

[2] Wang, M.L., Zhang, J.L. and Li, X.Z. (2008) Application of the (G’/G)-Expansion to Travelling Wave Solutions of the Broer-Kaup and the Approximate Long Water Wave Equations. Applied Ma-thematics and Computation, 206: 321-326.
https://doi.org/10.1016/j.amc.2008.08.045

[3] Li, L.X. and Wang, M.L. (2009) The (G’/G)-Expansion Method and Travelling Wave Solutions for a Higher-Order Nonlinear Schrodinger Equation. Applied Mathematics and Computation, 208, 440-445.
https://doi.org/10.1016/j.amc.2008.12.005

[4] 王鑫. 一类非线性偏微分方程的精确解[J]. 应用数学, 2013, 26(3): 521-525.

[5] 曹瑞. 一类广义Zakharov方程的精确行波解[J]. 数学杂志, 2013, 33(5): 837-843.

[6] Huang, J. and Liu, H. (2011) New Exact Traveling Wave Solutions for Fisher equation and Burgers-Fisher Equation. Journal of Mathematics, 31, 631-637.

[7] Rong, J., Tang, S. and Huang, W. (2010) Bifurcations of Traveling Wave Solutions for the k(n, 2n, -n) Equations. Journal of Mathematics, 30, 603-612.

[8] Whitham, G.B. (1974) Linear and Nonlinear Waves. Wiley, New York.

[9] Clarkson, P.A. and Mansfield, E.L. (1994) Nonlinearity. 975.

[10] Hietarinta, J., Conte, R. and Boccara, N. (1990) Nato Science Series C: Mathematical and Physical Sciences. 310, Kluwer, Dordrecht, 459-478.

[11] 沈守枫. (1+1)维广义的浅水波方程的变量分离解和孤子激发模式[J]. 物理学报, 2006, 55(3): 1016-1022.

[12] 王鑫, 邢文雅, 李胜军. 广义浅水波方程新的行波解[J]. 大学数学, 2015, 31(4): 9-13.

分享
Top