时标上一类分布时滞线性动力方程的全局吸引性
Global Attractivity for a Linear Dynamic Equation with a Distributed Delay on Time Scales
作者: 舒明春 :集美大学 诚毅学院,福建 厦门; 黄振坤 :集美大学 理学院,福建 厦门;
关键词: 全局吸引性; 时标上分布时滞; 混合时滞; 线性动力方程; Global Attractivity; Distributed Delay on Time Scales; Mixed Time Delays; Linear Dynamic Equation
摘要:Abstract: In this paper, we consider a linear dynamic equation with a distributed delay on time scales. By using Lyapunov function method, we obtain a novel sufficient condition for global attractivity of the linear delayed dynamic equation. And the linear dynamic equation with mixed delays on time scales is also discussed. Some examples are given to illustrate our results.
文章引用: 舒明春 , 黄振坤 (2017) 时标上一类分布时滞线性动力方程的全局吸引性。 理论数学, 7, 408-416. doi: 10.12677/PM.2017.75053
参考文献
[1] Bohner, M. (2002) and Peterson, A. Advances in Dynamic Equations on Time Scale. Birkhauser, Boston.
[2]
Bohner, M. and Peterson, A. (2001) Dynamic Equations on Time Scales: An Introduction Applications. Birkhauser, Boston.
https://doi.org/10.1007/978-1-4612-0201-1
[3] Dahal, R. (2009) Dynamic Equations on Time Scales. Dissertations & Theses, Gradworks, 38, 253-256.
[4]
Xu, Y.J. and Xu, Z.T. (2009) Oscillation Criteria for Two-Dimensional Dynamic Systems on Time Scales. Computational & Applied Mathematics, 225, 9-19.
https://doi.org/10.1016/j.cam.2008.06.010
[5]
Yu, J.S. and Cheng, S.S. (1994) A Stability Criterion for a Neutral Difference Equation with Delay. Applied Mathematics Letters, 7, 75-80.
https://doi.org/10.1016/0893-9659(94)90097-3
[6] 周展, 李红娟. 一类时标上时滞动力方程的全局吸引性[J]. 广州大学学报(自然科学版), 2009, 8(6): 1-4.
[7] Tan, Y.X. and Huang, Z.K. (2016) Synchronization of Drive-Response Networks with Delays on Time Scales. IEEE/CAA Journal of Automatica Sinica, PP, 1-10.
[8]
Matsumoto, A., Szidarovszky, F. and Yoshida, H. (2011) Dynamics in Linear Cournot Duopolies with Two Time Delays. Computational Economics, 38, 311-327.
https://doi.org/10.1007/s10614-011-9295-6
[9]
Ruan, S.G. and Filil, R. (2004) Dynamics of a Two-Neuron System with Discrete and Distributed Delays. Physica D: Nonlinear Phenomena, 191, 323-342.
https://doi.org/10.1016/j.physd.2003.12.004
[10] 杨小婧, 陈斯养. 具有混合时滞血液模型的Hopf分支与数值分析[J]. 计算机工程与应用, 2010, 46(31): 139-142.
[11] Rudin, W. 数学分析原理[M]. 第3版. 北京: 机械工业出版社, 2004.