具有不匹配参数的脉冲离散网络准同步
Quasi-Synchronization of Discrete-Time Networks with Parameter Mismatches under Impulsive Control

作者: 李嘉敏 , 宾红华 , 黄振坤 :集美大学理学院,福建 厦门;

关键词: 准同步离散神经网络参数不匹配脉冲控制Quasi-Synchronization Discrete-Time Networks Parameter Mismatches Impulsive Control

摘要:
本文研究了一类具有不匹配参数的离散神经网络在脉冲控制下的准同步问题。通过运用直接Lyapunov函数方法,文章首次给出了含不匹配参数的离散神经网络准同步条件。

Abstract: This paper deals with quasi-synchronization problem of neural networks for a class of discrete-time networks with parameter mismatches under impulsive control. By using the direct Lyapunov method, the synchronization criteria for the discrete neural networks with parameter mismatches are obtained at the first time.

文章引用: 李嘉敏 , 宾红华 , 黄振坤 (2017) 具有不匹配参数的脉冲离散网络准同步。 动力系统与控制, 6, 158-163. doi: 10.12677/DSC.2017.64020

参考文献

[1] Yang, X., Cao, J. and Yang, Z. (2009) Synchronization of Coupled Reaction-Diffusion Neural Networks with time-Varying Delays via Pinning-Impulsive Controller. SIAM Journal on Control & Optimization, 51, 3486-3510.
https://doi.org/10.1137/120897341

[2] Du, H., Shi, P. and Lv, N. (2013) Function Projective Synchronization in Complex Dynamical Networks with Time Delay via Hybrid Feedback Control. Nonlinear Analysis Real World Appli-cations, 14, 1182-1190.
https://doi.org/10.1016/j.nonrwa.2012.09.009

[3] Zhang, Q., Chen, J. and Wan, L. (2013) Impulsive Generalized Function Synchronization of Complex Dynamical Networks. Physics Letters A, 377, 2754-2760.
https://doi.org/10.1016/j.physleta.2013.08.014

[4] Zhang, W., Huang, J. and Wei, P. (2011) Weak Synchroniza-tion of Chaotic Neural Networks with Parameter Mismatch via Periodically Intermittent Control. Applied Mathematical Modelling, 35, 612-620.
https://doi.org/10.1016/j.apm.2010.07.009

[5] Yuan, K. and Cao, J. (2008) Synchronization of Master-Slave Systems with Mixed Time Delays and Mismatched Parameters. Proceedings of the 27th Chinese Control Conference, 540-543.
https://doi.org/10.1109/CHICC.2008.4605704

[6] Huang, T., Li. C. and Liao, X. (2007) Synchroniza-tion of a Class of Coupled Chaotic Delayed Systems with Parameter Mismatch. American Institute of Physics, 17, 033121.
https://doi.org/10.1063/1.2776668

[7] Liang, J., Wang, Z. and Liu, X. (2008) Exponential Synchroniza-tion of Stochastic Delayed Discrete-Time Complex Networks. Nonlinear Dynamics, 53, 153-165.
https://doi.org/10.1007/s11071-007-9303-5

[8] Liu, B., Liu, T. and Dou, C. (2014) Stability of Discrete-Time Delayed Impulsive Linear Systems with Application to Multitracking. International Journal of Control, 87, 911-924.
https://doi.org/10.1080/00207179.2013.861930

[9] Liu, B. and Marquez. H (2007) Razumikhin-Type Stability Theorems for Discrete Delay Systems. Automatica, 43, 1219-1225.
https://doi.org/10.1016/j.automatica.2006.12.032

[10] Zhang, Y., Sun, J. and Feng, G. (2009) Impulsive Control of Discrete Systems with Time Delay. IEEE Transactions on Automatic Control, 54, 830-834.
https://doi.org/10.1109/TAC.2008.2010968

[11] Boyd, S., Ghaoui, L., Feron, E. and Balakrishnan, V. (1994) Linear Matrix Inequalities in System and Control Theory. SIAM, Philadephia.

[12] Langville, A. and Stewart, W. (2004) The Kronecker Product and Stochastic Automata Networks. Journal of Computational and Applied Mathematics, 167, 429-447.
https://doi.org/10.1016/j.cam.2003.10.010

[13] Tang, Z., Park, J. and Feng, W. (2017) Impulsive Effects on Quasi-Synchronization of Neural Networks with Parameter Mismatches and Time-Varying Delay. IEEE Transactions on Neural Networks and Learning Systems, 99, 1-12.
https://doi.org/10.1109/TNNLS.2017.2651024

分享
Top