Components and Application of Drilling Fluid Isotope Logger

作者: 宋 祥 :东营派克赛斯石油装备有限公司,山东 东营;

关键词: 钻井液气体同位素录井稳定同位素比率质谱仪同位素录井仪Mud Gas Isotope Logging Isotope-Ratio Mass Spectrometry Isotope Logger

钻井液气体同位素录井(MGIL)是一门新兴的录井技术。国内传统的同位素分析通常为离线分析,时间成本和资金成本较高;而中法渤海地质服务公司在同位素录井服务中使用的Geoisotope在线同位素录井仪虽然实现了同位素数据的在线测量,但仅能提供甲烷的同位素数据,并且尺寸较大,数据易受外界因素影响。英国CSS公司研制的Isologger钻井液同位素录井仪,采用了稳定同位素比率质谱仪(Isotope-ratio mass spectrometry,简称“IRMS”),该设备具有体积小、测量精度高、受外界影响较小的特点;合理地引入了气相色谱分离单元,使得Isologger能够通过在线分析得出C1~C5的同位素数据,丰富了采集的同位素数据信息。该仪器以多组分的同位素数据为基础,可在现场进行井下油气层分析、烃类成熟度分析等工作,极大地提高了录井工作的指导地位。同位素录井在深海、非常规油气层、高温高压含硫地层等区域有着很好的应用前景。

Abstract: This MGIL (Mud gas isotope logging) was a newly emerged well logging technique. The conven-tional isotopic analysis in China was normally offline in the laboratory, and thus it cost much time and money. Though measuring online, Geoisotope used in Sino-France geological isotope logging service could only test methane isotope data, and it was larger in size and susceptible to the influence of external environment. The mud isotope logger, isologger developed by the British CSS (Compact Science System) Company, equipped with Isotope-ratio mass spectrometry (called IRMS), was smaller in size, higher in accuracy, and less susceptible to the influence of external environment, in which a gas chromatogram separation unit was rationally introduced. Thus the Isologger could measure isotope data of C1-C5 online, and it enriched the isotope information to mud log. Based on isotope data of multiple components, hydrocarbon maturity analysis and down hole oil formation analysis can be carried out locally, which greatly enhances the guidance function of mud logging. Isotope logging has bright application prospects in deep sea area, unconventional reservoirs, and high temperature, high pressure and high sulphur content reservoirs.

文章引用: 宋 祥 (2017) Isologger钻井液同位素录井仪组成及应用。 石油天然气学报, 39, 211-216. doi: 10.12677/JOGT.2017.394057


[1] 戴金星. 天然气中烷烃气碳同位素研究的意义[J]. 天然气工业, 2011, 31(12): 1-6.

[2] Ellis, L., Brown, A., Schoell, M. and Uchytil, S. (2003) Mud Gas Isotope Logging (MGIL) Assists in Oil and Gas Drilling Operations. Oil & Gas Journal, 101, 32-41.

[3] 陈恭洋, 印森林, 刘岩. 录井学理论体系与录井技术发展方向探讨[J]. 录井工程, 2016, 27(4): 5-11.

[4] 孙恒君, 黄小刚. 实时同位素录井技术[J]. 录井工程, 2010, 21(3): 1-4.

[5] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 28.

[6] Ablard, P., Bell, C., Cook, D., Fornasier, I., Poyet, J.-P., Sharma, S., Fielding, K., Lawton, G., Haines, G., Herkommer, M.A., Mccarthy, K., Radakovic, M. and Umar, L. (2012) The Expanding Role of Mud Logging. Oilf Rev, 24, 24-41.

[7] Hammerschmidt, S.B., Wiersberg, T., Heuer, V.B., Wendt, J., Erzinger, J. and Kopf, A. (2014) Real-Time Drilling Mud Gas Monitoring for Qualitative Evaluation of Hydrocarbon Gas Composition during Deep Sea Drilling in the Nankai Trough Kumano Basin. Geochemical Transactions, 15, 15.

[8] Ferroni, G. (2016) Deep-Spectrum Gaschromatography and Carbon Isotopes Analysis While Drilling Enhance Value of Real-Time Formation Evaluation, Reducing Interpretation Uncertainty. International Petroleum Technology Conference, Thailand, 14 to 16 November, 14-16.

[9] 李艳婷. MGIL最大限度地发挥气测价值[J]. 测井技术信息, 2004, 17(4): 28-33.

[10] Tang, Y., Gao, L., Wu, S., et al. (2016) Advanced Isotope Geochemistry to Increase Production From Horizontal Wells And Reservoirs. AAPG Annual Convention and Exhibition, Search & Discovery, Calgary, 19-22 June 2016.

[11] Tilley, B., McLellan, S., Hiebert, S., Quartero, B., Veilleux, B. and Muehlenbachs, K. (2011) Gas Isotope Reversals in Fractured Gas Reservoirs of the Western Canadian Foothills: Mature Shale Gases in Disguise. AAPG Bulletin, 95, 1399-1422.

[12] Hakami, A., Ellis, L., Al-Ramadan, K. and Abdelbagi, S. (2016) Mud Gas Isotope Logging Application for Sweet Spot Identification in an Unconventional Shale Gas Play: A Case Study from Jurassic Carbonate Source Rocks in Jafurah Basin, Saudi Arabia. Marine and Petroleum Geology, 76, 133-147.

[13] Zumberge, J.E., Ferworn, K.A. and Curtis, J.B. (2009) Gas Character Anomalies Found in Highly Productive Shale Gas Wells. Geochimica et Cosmochimica Acta Supplement, 73, 1539.

[14] Martin Schoell. Mud Gas Isotope Techniques While Drilling.

[15] Berner, U. and Faber, E. (1996) Empirical Carbon Isotope/Maturity Relationships for Gases from Algal Kerogens and Terrigenous Organic Matter, Based on Dry, Open-System Pyrolysis. Organic Geochemistry, 24, 947-955.

[16] Weatherford Oil Field Services Ltd. Reducing Exploration and Development Risk Using Mud Gas Compositional and Isotopic Data.