基于等价关系逻辑“与”“或”的粗糙集
Rough Set Based on Logical AND and OR of Equivalence Relations

作者: 徐伟华 * , 张先韬 , 王巧荣 :;

关键词: 粗糙集等价关系逻辑运算逻辑“与”粗糙集逻辑“或”粗糙集Rough Set Logical Operation of Equivalence Relations AND-RS OR-RS

摘要: 本文从关系逻辑运算的角度研究粗糙集,对经典的粗糙集进行了推广。对多个等价关系进行逻辑“与”和逻辑“或”运算,提出了逻辑“与”粗糙集模型和逻辑“或”粗糙集模型。说明了逻辑“与”粗糙集模型和Pawlak经典粗糙集的关系,并详细研究了逻辑“或”粗糙集模型的重要性质,定义了逻辑“或”粗糙集模型中的若干度量,举例验证了该模型。

Abstract: We popularize the classical rough set model in this paper and study rough set in the view of logical operation of equivalence relations. The logical AND rough set model and the logical OR rough set model are proposed on the basis of the operations logical AND and logical OR of equivalence relations. Furthermore, the connection between the logical AND rough set model and Pawlak’s classical rough set model is illustrated. Important properties are discussed in depth and several measures are defined in OR-RS. An example is em-ployed to explain OR-RS.

文章引用: 徐伟华 , 张先韬 , 王巧荣 (2011) 基于等价关系逻辑“与”“或”的粗糙集。 数据挖掘, 1, 7-12. doi: 10.12677/hjdm.2011.11002

参考文献

[1] Z.Pawlak. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(8): 41-356.

[2] G. Gediga, I. Düntsch. Rough approximation quality revisited. Artificial Intelligence, 2001, 102(2): 219-234.

[3] Z. Pawlak, A. Skowron. Rudiments of rough sets. Information Sciences, 2007, 177(1): 3-27.

[4] 张文修, 吴伟志. 粗糙集理论介绍和研究综述[J]. 模糊系统与数学, 2000, 14(4): 1-12.

[5] 张文修, 吴伟志 梁吉业等. 粗糙集理论与方法[M]. 北京: 科学出版社, 2001.

[6] 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M]. 北京: 科学出版社, 2003.

[7] Y. H. Qian, J. Y. Liang, Y. Y. Yao, et al. MGRS: A multi-granulation rough set. Information Sciences, 2010, 180(6): 949-970.

[8] W. H. Xu,H. Z. Yang, and W. X. Zhang. Uncertainty measures of roughness of knowledge and rough sets in ordered information systems. Lecture Notes in Computer Science, 2007, 4682: 759-769.

[9] W. H. Xu, W. X. Zhang. Measuring roughness of generalized rough sets induced by a covering. Fuzzy Sets and Systems, 2007, 158(22): 2443-2455.

[10] X. Y. Zhang, W. H. Xu. A novel approach to roughness measure in fuzzy rough sets. Advances in Soft Computing, 2007, 40: 775-780.

分享
Top