基于瞬时频率的 Duffing 振子相变判别新方法
A New Method for Phase Transition Identification of Duffing Oscillator Based on Instantaneous Frequency

作者: 张嵩 , 芮国胜 , 徐彬 , 宗磊 , 崔文 :;

关键词: 相变瞬时频率经验模态分解弱信号检测Duffing 振子Phase Transition Instantaneous Frequency EMD Weak Signal Detection Duffing Oscillator

摘要: :利用Duffing 振子检测微弱信号的关键在于对振子相变的正确判别,针对现有Duffing 振子相变判别方法存在计算量大、不易量化处理的问题,本文利用经验模态分解方法,研究了混沌临界状态以及大尺度周期状态下Duffing 振子系统输出信号瞬时频率特性,提出了以系统输出第一层内蕴模态函数瞬时频率极差为度量的相变判别方法。基于此相变判别方法,提出了一种新的基于瞬时频率的Duffing 振子微弱信号检测方法。通过仿真计算,实现了信噪比(SNR)为-52dB 的微弱正弦信号的Duffing振子检测。

Abstract: Phase transition identification is the key technology of weak signals detection using Duffing oscillator. Considering the complexity and huge computation of existing algorithms, the instantaneous frequencies of the chaotic and large scale period states of Duffing oscillator system output were analyzed using empirical mode decomposition. A novel method for phase transition identification based on instantaneous frequency of the first intrinsic mode function of Duffing oscillator system output was proposed. Based this phase transition identification algorithm, a new method of weak signals detection using Duffing oscillator was proposed. Simulation results indicate this method’s validity.

文章引用: 张嵩 , 芮国胜 , 徐彬 , 宗磊 , 崔文 (2011) 基于瞬时频率的 Duffing 振子相变判别新方法。 无线通信, 1, 23-28. doi: 10.12677/hjwc.2011.11005

参考文献

[1] 王永生, 姜文志, 赵建军等. 一种Duffing弱信号检测新方法及仿真研究[J]. 物理学报, 2008, 57(4): 2053-2059.

[2] 兀旦晖. 基于图像识别混沌的弱信号检测方法研究[J]. 计算机测量与控制, 2010, 18(2): 320-322.

[3] 罗文亮, 柯熙政, 李欣. 电力载波通信中强噪声背景下弱信号的混沌振子检测方法[J]. 量子电子学报, 2010, 27(2): 134- 139.

[4] 高清山, 张天骐, 黄铫等. 基于Simulink的微弱信号混沌解调仿真研究[J]. 计算机应用, 2009, 29(12): 3211-3214.

[5] 谢涛, 魏学业. 一种新的间歇混沌信号Poincaré映像判别方法[J]. 电子与信息学报, 2009, 30(9): 2166-2169.

[6] 王清亮. 基于符号序列信息熵混沌特性的微弱信号检测[J]. 仪器仪表学报, 2009, 30(12): 2491-2496.

[7] 姚宝恒, 郑连宏, 杨霞菊等. Duffing振子相变检测中一种新的量化测度[J]. 振动与冲击, 2006, 25(1): 51-52, 57.

[8] 吴勇峰, 张世平, 孙金玮. 用相位差判别Duffing振子相变的新方法[J]. 仪器仪表学报, 2010, 31(1): 161-165.

[9] N. E. Huang, Z. Shen, S. R. Long, et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proceedings of the Royal Society A, 1998, 454(1971): 903-995.

[10] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE, 1992, 80(4): 520-538.

[11] 张海勇. 一种新的非平稳信号分析方法—局域波分解[J]. 电子与信息学报, 2003, 25(10): 1327-1333.

[12] N. E. Huang, S. Zheng, and S. R. Long. A new view of nonlinear water waves: The Hilbert spectrum. Annual Review of Fluid Mechanics, 1999, 31: 417-457.

分享
Top