﻿ 不确定线性离散时滞系统的鲁棒脉冲镇定

# 不确定线性离散时滞系统的鲁棒脉冲镇定Robust Impulsive Stability for Uncertain Linear Discrete-Time Systems with Delay

Abstract: This paper investigates the problem of robust impulsive stabilization of uncertain linear dis-crete-time systems with delay. By introducing the time-varying Lyapunov function that captures the dynamical characteristic of discrete-time impulsive delayed uncertain linear systems, and utilizes a convex combination technique, new robust exponential stability criteria for uncertain linear discrete-time impulsive delayed systems are established in terms of linear matrix inequalities. And the feedback gain matrices of robust impulsive control law are obtained. Numerical simulations are rendered to exemplify the effectiveness and applicability of the proposed results.

[1] 关治洪, 廖俊峰, 廖锐全. 不确定脉冲系统的鲁棒 控制[J]. 控制理论与应用, 2002, 19(4): 623-626.

[2] Chen, W.-H., Wang, J.-G., Tang, Y.-J., et al. (2008) Robust Control of Uncertain Linear Impulsive Stochastic Systems. International Journal of Robust and Nonlinear Control, 18, 1348-1371.
https://doi.org/10.1002/rnc.1286

[3] Chen, W.-H. and Zheng, W.X. (2009) Robust Stability and Control of Uncertain Impulsive Systems with Time-Delay. Automatica, 45, 109-117.

[4] Liu, B. and Liu, X. (2007) Robust Stability of Uncertain Discrete Impulsive Systems. IEEE Transactions on Circuits and Systems, 54, 455-459.
https://doi.org/10.1109/TCSII.2007.892395

[5] 华民刚, 催宝同. 不确定时滞线性系统的鲁棒镇定问题[J]. 江南大学学报, 2006, 5(3): 298-301.

[6] 陈芳信. 线性不确定离散时滞系统的鲁棒控制研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2005.

[7] 郑连伟, 刘晓平, 张庆灵. 具有时变不确定性的线性时滞系统的鲁棒 控制[J]. 自动化学报, 2001, 27(3): 377-380.

[8] 王景成, 苏宏业, 俞立, 等. 线性时变不确定时滞系统的鲁棒 控制[J]. 控制理论与应用, 1998, 15(2): 257-261.

[9] Jiang, X.-F. and Han, Q.-L. (2005) On Control for Linear Systems with Interval Time-Varying Delay. Automatica, 41, 2099-2106.

[10] Bainov, D.D. and Simeonov, P.S. (1989) Systems with Impulse Effect: Stability, Theory and Applications. Elllis Horwood, Chichester.

[11] Chen, W.-H. and Zheng, W.X. (2007) Robust Stabilization of Delayed Markovian Jump Systems Subject to Parametric Uncertainties. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA: IEEE Press, 10-11 December 2007, 3054-3059.

Top