纳米材料原位生长表征技术的研究进展
Progress in Characterization Technique of In-Situ Growth of Nanomaterials

作者: 万 婷 , 李星星 , 邱江源 , 肖 明 , 汤焕丰 :广西民族大学化学化工学院,广西 南宁; 黄在银 :广西民族大学化学化工学院,广西 南宁;广西林产化学与工程重点实验室,广西 南宁;广西高校食品安全与药物分析化学重点实验室,广西 南宁;

关键词: 纳米材料材料合成原位技术微热量法热力学Nanomaterials Materials Synthesis In-Situ Technology Microcalorimeter Thermodynamics

摘要:
纳米技术的关键是按人们的意志直接操控单个原子、分子或原子团、分子团,实现纳米材料的可控合成,制备具有特定功能的材料。纳米材料原位生长研究可获得体系中纳米粒子生长过程的动态瞬时信息,继而掌握纳米材料生长特征模式和生长参数,该研究对实现纳米材料可控生长具有重要意义,本文就纳米材料原位生长研究的技术方法进行概述,并对其发展前景进行展望。

Abstract: The key of nanotechnology is operating single atom, molecules or the groups of atoms and mole-cules directly according to the aspiration of the people, realizing the controlled synthesis of na-nomaterials and synthetizing materials with specific functions. In-situ growth research of nano-materials can obtain the dynamic transient information of the growth process of nanoparticles in the system, and then grasp the growth characteristic and parameters of nanomaterials. It is significant for controllable synthesis of nanomaterials. In this paper, many different technical approaches which can be applied to trace the in-situ growth of nanomaterials are summarized, and the development prospect was forecasted.

文章引用: 万 婷 , 黄在银 , 李星星 , 邱江源 , 肖 明 , 汤焕丰 (2017) 纳米材料原位生长表征技术的研究进展。 纳米技术, 7, 47-58. doi: 10.12677/NAT.2017.73006

参考文献

[1] 朱世东, 徐自强, 白真权, 尹成先, 苗健. 纳米材料国内外研究进展Ⅰ——纳米材料的结构、特异效应与性能[J].热处理技术与装备, 2010, 31(4): 1-8.

[2] 姜俊颖, 黄在银, 米艳, 李艳芬, 袁爱群. 纳米材料热力学的研究现状及展望[J]. 化学进展, 2010, 22(6): 1058- 1067.

[3] 朱世东, 周根树, 蔡锐, 韩燕, 田伟. 纳米材料国内外研究进展Ⅱ——纳米材料的应用于制备方法[J]. 热处理技术与装备, 2010, 31(3): 1-5.

[4] Yen, C.H., Shimizu, K., Lin, Y.Y., Bailey, F., Cheng, F. and Wai, C.M. (2007) Chemical Fluid Deposition of Pt-Based Bimetallic Nanoparticles on Multiwalled Carbon Nanotubes for Direct Methanol Fuel Cell Application. Energy & Fuels, 21, 2268-2271.
https://doi.org/10.1021/ef0606409

[5] Daniel, M.C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293-346.
https://doi.org/10.1021/cr030698+

[6] Wiederrecht, G.P., Wurtz, G.A. and Hranisavljevic, J. (2004) Coherent Coupling of Molecular Excitons to Electronic Polarizations of Noble Metal Nanoparticles. Nano Letters, 4, 2121-2125.
https://doi.org/10.1021/nl0488228

[7] Watanabe, K., Menzel, D., Nilius, N. and Freund, H. (2006) Photochemistry on Metal Nanoparticles. Chemical Reviews, 106, 4301-4320.
https://doi.org/10.1021/cr050167g

[8] Jun, Y.W., Seo, J.W. and Cheon, J. (2008) Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Accounts of Chemical Research, 41, 179-189.
https://doi.org/10.1021/ar700121f

[9] LaMer, V.K. and Dinegar, R.H. (1950) Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society, 72, 4847-4854.
https://doi.org/10.1021/ja01167a001

[10] 李艳芬. 钼酸镉纳米八面体的液相控制合成、表征及原位热动力研究[D]: [硕士学位论文]. 南宁: 广西民族大学, 2011.

[11] Stach, E.A., Pauzauskie, P.J., Kuykendall, T., Goldberger, J., He, R. and Yang, P. (2003) Watching GaN Nanowires Grow. Nano Letters, 3, 867-869.
https://doi.org/10.1021/nl034222h

[12] Wang, Z.L., Kong, X.Y., Wen, X.G. and Yang, S.H. (2003) In Situ Structure Evolution from Cu(OH)2 Nanobelts to Copper Nanowires. The Journal of Physical Chemistry B, 107, 8275-8280.
https://doi.org/10.1021/jp035557q

[13] 陈博, 程易, 丁石, 胡蓉蓉. 火焰法合成纳米TiO2颗粒生长过程[J]. 过程工程学报, 2007, 7(5): 944-951.

[14] Chou, Y.C., Wu, W.W., Cheng, S.L., Yoo, B.Y., Myung, N., Chen, L.J. and Tu, K.N. (2008) In Situ TEM Observation of Repeating Events of Nucleation in Epitaxial Growth of Nano CoSi2 in Nanowires of Si. Nano Letters, 8, 2194-2199.
https://doi.org/10.1021/nl080624j

[15] Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U. and Alivisatos, A.P. (2009) Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science, 324, 1309-1312.
https://doi.org/10.1126/science.1172104

[16] SimÕesi, S., Calinas, R., Vieira, M.T., Vieira, M.F. and Ferreira, P.J. (2010) In Situ TEM Study of Grain Growth in Nanocrystalline Copper Thin Films. Nanotechnology, 21, Article ID: 145701.

[17] Evans, J.E., Jungjohann, K.L., Browning, N.D. and Arslan, I. (2011) Controlled Growth of Nanoparticles from Solution with In Situ Liquid Transmission Electron Microscopy. Nano Letters, 11, 2809-2813.
https://doi.org/10.1021/nl201166k

[18] Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D. and Browning, N.D. (2012) Direct In Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth. ACS Nano, 6, 8599-8610.
https://doi.org/10.1021/nn303371y

[19] Ghatak, J., Guan, W. and Möbus, G. (2012) In Situ TEM Observation of Lithium Nanoparticle Growth and Morphological Cycling. Nanoscale, 4, 1754-1759.
https://doi.org/10.1039/c2nr11546h

[20] Almeida, T.P., Fay, M.W., Hansen, T.W., Zhu, Y.Q. and Brown, P.D. (2014) Insights from in Situ and Environmental TEM on the Oriented Attachment of α-Fe2O3 Nanoparticles during α-Fe2O3 Nanorod Formation. CrystEngComm, 16, 1540-1546.
https://doi.org/10.1039/C3CE41866A

[21] Chang, X.F., Wang, S.B., Qi, Q., Gondal, M.A., Rashid, S.G., Gao, S., Yang, D.Y., Shen, K., Xu, Q.Y. and Wang, P. (2015) Insights into the Growth of Bismuth Nanoparticles on 2D Structured BiOCl Photocatalysts: An In Situ TEM Investigation. Dalton Transactions, 44, 15888-15896.
https://doi.org/10.1039/C5DT02217G

[22] Wu, J.B., Gao, W.P., Wen, J.G., Miller, D.J., Lu, P., Zuo, J.M. and Yang, H. (2015) Growth of Au on Pt Icosahedral Nanoparticles Revealed by Low-Dose In Situ TEM. Nano Letters, 15, 2711-2715.
https://doi.org/10.1021/acs.nanolett.5b00414

[23] 田彦宝, 吉元, 付景永, 张隐奇, 权雪玲, 张跃飞, 郑善亮, 韩晓东. ZnO纳米线原位生长的ESEM方法[J]. 真空科学与技术学报, 2006, 26(6): 487-489.

[24] Zhang, J.M., Zhang, X.Z., Chen, L., Xu, J., You, L.P., Ye, H.Q. and Yu, D.P. (2007) In Situ Study of the Growth of ZnO Nanosheets Using Environmental Scanning Electron Microscope. Applied Physics Letters, 90, Article ID: 233104.
https://doi.org/10.1063/1.2746947

[25] Zhang, X.Z., Zhang, J.M., Chen, L., Xu, J., You, L.P. and Yu, D.P. (2008) Evidences Dominating the Formation of ZnO Nanostructures via In-Situ Study in An Environmental Scanning Electron Microscope. Applied Physics A, 92, 669-672.
https://doi.org/10.1007/s00339-008-4613-0

[26] Ono, T., Saitoh, H. and Esashi, M. (1997) Si Nanowire Growth With Ultrahigh Vacuum Scanning Tunneling Microscopy. Applied Physics Letters, 70, 1852-1854.
https://doi.org/10.1063/1.118711

[27] Zell, C.A. and Freyland, W. (2003) In Situ STM and STS Study of Co and Co-Al Alloy Electrodeposition from an Ionic Liquid. Langmuir, 19, 7445-7450.
https://doi.org/10.1021/la030031i

[28] Wang, H.C., Sun, S.G., Yan, J.W., Yang, H.Z. and Zhou, Z.Y. (2005) In Situ STM Studies of Electrochemical Growth of Nanostructured Ni Films and Their Anomalous IR Properties. The Journal of Physical Chemistry B, 109, 4309- 4316.
https://doi.org/10.1021/jp046313o

[29] Patera, L.L., Africh, C., Weatherup, R.S., Blume, R., Bhardwaj, S., Carla, C.C., Axel, K.G., Robert, S., Giovanni, C., Stephan, H. and Cinzia, C. (2013) In Situ Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth. ACS Nano, 7, 7901-7912.
https://doi.org/10.1021/nn402927q

[30] Ramesh, G.V., Sreedhar, B. and Radhakrishnan, T.P. (2009) Real Time Monitoring of the In Situ Growth of Silver Nanoparticles in a Polymer Film under Ambient Conditions. Physical Chemistry Chemical Physics, 11, 10059-10063.
https://doi.org/10.1039/b913931a

[31] Jungjohann, K.L., Bliznakov, S., Sutter, P.W. and Stach, E.A. (2013) In Situ Liquid Cell Electron Microscopy of the Solution Growth of Au-Pd Core-Shell Nanostructures. Nano Letters, 13, 2964-2970.
https://doi.org/10.1021/nl4014277

[32] Wang, Y., Zou, H.Y. and Huang, C.Z. (2015) Real-Time Monitoring of Oxidative Etching on Single Ag Nanocubes via Light- scattering Dark-Field Microscopy Imaging. Nanoscale, 7, 15209-15213.
https://doi.org/10.1039/C5NR04234H

[33] Jiang, Y., Li, H.B., Wu, Z.M., Ye, W.Y., Zhang, H., Wang, Y., Sun, C.H. and Zhang, Z. (2016) In Situ Observation of Hydrogen-Induced Surface Faceting for Palladium-Copper Nanocrystals at Atmospheric Pressure. Angewandte Chemie International Edition, 55, 1-5.
https://doi.org/10.1002/anie.201605956

[34] 刘成刚, 卓然然, 邵春光, 李倩, 曹伟, 申长雨, 张阳, 张瑞静. 原位X射线检测技术在高聚物研究中的新进展[J]. 高分子通报, 2013(2): 79-83.

[35] 田宇, 朱才镇, 龚静华, 马敬红, 杨曙光, 徐坚. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10): 1751-1762.

[36] Renaud, G., Lazzari, R., Revenant, C., Barbier, A., Noblet, M., Ulrich, O., Leroy, F., Jupille, J., Borensztein, Y., Henry, C.R., Deville, J.P., Scheurer, F., Jeannot, M.M. and Fruchart, O. (2003) Real-Time Monitoring of Growing Nanoparticles. Science, 300, 1416-1419.
https://doi.org/10.1126/science.1082146

[37] Kammler, H.K., Beaucage, G., Kohls, D.J., Agashe, N. and Jan, I. (2005) Monitoring Simultaneously the Growth of Nanoparticles and Aggregates by In Situ Ul-tra-Small-Angle X-Ray Scattering. Journal of Applied Physics, 97, Article ID: 054309.
https://doi.org/10.1063/1.1855391

[38] Abécassis, B., Testard, F., Spalla, O. and Barboux, P. (2007) Probing In Situ the Nucleation and Growth of Gold Nanoparticles by Small-Angle X-Ray Scattering. Nano Letter, 7, 1723-1727.
https://doi.org/10.1021/nl0707149

[39] Ingham, B., Illy, B.N. and Ryan, M.P. (2008) Direct Observation of Distinct Nucleation and Growth Processes in Electrochemically Deposited ZnO Nanostructures Using In Situ XANES. The Journal of Physical Chemisry C, 112, 2820- 2824.
https://doi.org/10.1021/jp075775+

[40] Mattevi, C., Wirth, C.T., Hofmann, S., Blume, R., Cantoro, M., Ducati, C., Cepek, C., Axel, K.G., Milne, S., Carla, C.C., Dolafi, S., Goldoni, A., Schloegl, R. and Robertson, J. (2008) In-Situ X-Ray Photoelectron Spectroscopy Study of Catalyst-Support Interactions and Growth of Carbon Nanotube Forests. The Journal of Physical Chemistry C, 112, 12207-12213.
https://doi.org/10.1021/jp802474g

[41] McPeak, K.M., Becker, M.A., Britton, N.G., Majidi, H., Bunker, B.A. and Baxter, J.B. (2010) In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth during Chemical Bath Deposition. Chemistry of Materials, 22, 6162-6170.
https://doi.org/10.1021/cm102155m

[42] Dorman, J.A., Mao, Y.B., Bargar, J.R. and Chang, J.P. (2010) In Situ Diffraction and Absorption Studies of the Growth and Phase Transformation of Yttium Hydroxide Nanotubes to Their Oxide Counterparts. The Journal of Physical Chemistry C, 114, 17422-17427.
https://doi.org/10.1021/jp105389a

[43] Polte, J., Erler, R., Thünemann, A.F., Sokolov, S., Ahner, T.T., Rademann, K., Emmerling, F. and Kraehnert, R. (2010) Nucleation and Growth of Gold Nanoparticles Studied via In Situ Small Angle X-Ray Scattering at Millisecond Time Resolution. ACS Nano, 4, 1076-1082.
https://doi.org/10.1021/nn901499c

[44] Kuo, C.H., Chu, Y.T., Song, Y.F. and Huang, M.H. (2011) Cu2O Nanocrys-tal-Templated Growth of Cu2S Nanocages with Encapsulated Au Nanoparticles and In-Situ Transmission X-Ray Microscopy Study. Advanced Functional Materials, 21, 792-797.
https://doi.org/10.1002/adfm.201002108

[45] Cravillon, J., Schröder, C.A., Nayuk, R., Gummel, J., Huber, K. and Wiebcke, M. (2011) Fast Nucleation and Growth of ZIF-8 Nanocrystals Monitored by Time-Resolved In Situ Small-Angle and Wide-Angle X-Ray Scattering. Angewandte Chemie, 123, 8217-8221.
https://doi.org/10.1002/ange.201102071

[46] Chen, W., Fan, Z.L. and Lai, Z.P. (2013) Synthesis of Core-Shell Heterostructured Cu/Cu2O Nanowires Monitored by In Situ XRD as Efficient Visible-Light Photocatalysts. Journal of Materials Chemistry A, 1, 13862-13868.
https://doi.org/10.1039/c3ta13413j

[47] Song, J.C., Xia, F., Zhao, M., Zhong, Y.L., Li, W., Loh, K.P., Caruso, R.A. and Bao, Q.L. (2015) Solvothermal Growth of Bismuth Chalcogenide Nanoplatelets by the Oriented Attachment Mechanism: An In Situ PXRD Study. Chemistry of Materials, 27, 3471-3482.
https://doi.org/10.1021/acs.chemmater.5b00903

[48] Yi, Z.F., Dumée, L.F., Garvey, C.J., Feng, C.F., She, F.H., Rookes, J.E., Mudie, S., Cahill, D.M. and Kong, L.X. (2015) A New Insight into Growth Mechanism and Kinetics of Mesoporous Silica Nanoparticles by In Situ Small Angle X-Ray Scattering. Langmuir, 31, 8478-8487.
https://doi.org/10.1021/acs.langmuir.5b01637

[49] Kablitz, A., Guilherme, A., Joester, M., Reinholz, U., Radtke, M., Bienert, R., Schulz, K., Schmack, R., Kraehnert, R. and Emmerling, F. (2015) Time-Resolved In Situ Studies on the Formation Mechanism of Iron Oxide Nanoparticles Using Combined Fast-XANES and SAXS. CrystEngComm, 17, 8463-8470.
https://doi.org/10.1039/C5CE01585E

[50] 姜波, 皮建彪, 谭训强, 陈杰. 原位光谱法研究聚合物/CO2系统——吸着、溶胀以及溶解度[J]. 浙江化工, 2009, 40(1): 14-17.

[51] Zhang, K.G., Li, G.K. and Hu, Y.L. (2015) In Situ Loading of Well-Dispersed Silver Nanoparticles on Nanocrystalline Magnesium Oxide for Real-Time Monitoring of Catalytic Reactions by Surface Enhanced Raman Spectroscopy. Nanoscale, 7, 16952-16959.
https://doi.org/10.1039/C5NR05718C

[52] Qu, L.H., Yu, W.W. and Peng, X.G. (2004) In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals. Nano Letters, 4, 465-469.
https://doi.org/10.1021/nl035211r

[53] Becker, J., Schubert, O. and Sönnichsen, C. (2007) Gold Nanoparticle Growth Monitored In Situ Using a Novel Fast Optical Single-Particle Spectroscopy Method. Nano Letters, 7, 1664-1669.
https://doi.org/10.1021/nl070627g

[54] Tuinenga, C., Jasinski, J., Iwamoto, T. and Chikan, V. (2008) In Situ Observation of Heterogeneous Growth of CdSe Quantum Dots: Effect of Indium Doping on the Growth Kinetics. ACS Nano, 2, 1411-1421.
https://doi.org/10.1021/nn700377q

[55] Finnie, P., Li-Pook-Than, A. and Lefebvre, J. (2009) The Dynamics of the Nucleation, Growth and Termination of Single-Walled Carbon Nanotubes from In Situ Raman Spectroscopy during Chemical Vapor Deposition. Nano Research, 2, 783-792.
https://doi.org/10.1007/s12274-009-9076-x

[56] 李帅, 陶强, 张庆瑜. 光催化合成金属Ag纳米颗粒的生长机制——晶核密度控制的生长模式转换[J]. 无机化学学报, 2014, 30(7): 1567-1574.

[57] Heurlin, M., Anttu, N., Camus, C., Samuelson, L. and Borgström, M.T. (2015) In Situ Characterization of Nanowire Dimensions and Growth Dynamics by Optical Reflectance. Nano Letters, 15, 3597-3602.
https://doi.org/10.1021/acs.nanolett.5b01107

[58] 杨奇, 陈三平, 谢钢, 刘向荣, 刘明艳, 朱之轮, 贾青生, 高胜利. RD496微热量计的研制及其应用[J]. 中国科学:化学, 2014, 44(6): 889-914.

[59] Navrotsky, A. (2007) Calorimetry of Nanoparticles, Surfaces, Interfaces, Thin Films, and Multilayers. The Journal of Chemical Thermodynamics, 39, 1-9.
https://doi.org/10.1016/j.jct.2006.09.011

[60] 王学营, 南照东, 郝海燕, 李亚生. 溶剂热合成法制备纳米颗粒自组装的线形和球形铜的硫化物[J]. 化学学报, 2007, 65(19): 2139-2143.

[61] Nan, Z.D., Wang, M.Y. and Yan, B.Q. (2009) In Situ Investigation on the Formation Mechanism of MCM-41 Mesoporous Silica by Microcalorimetry. Journal of Chemical & Engineering Data, 54, 83-89.
https://doi.org/10.1021/je8006502

[62] Liu, J., Nan, Z.D. and Gao, S.L. (2015) In Situ Microcalorimetry Study of ZnFe2O4 Nanoparticle Formation under Solvothermal Conditions. Dalton Transactions, 44, 17293-17301.
https://doi.org/10.1039/C5DT01982F

[63] Wu, J., Chen, S.P. and Gao, S.L. (2010) In Situ Calorimetric Investigation of ZnO Transformation from Flower-Like Nanostructures to Microrod. Materials Chemistry and Physics, 122, 301-304.
https://doi.org/10.1016/j.matchemphys.2010.02.025

[64] Li, Y.F., Jiang, J.Y., Fan, G.C., Ma, Y.J. and Huang, Z.Y. (2011) Kinetic Investigation of In Situ Growth of CdMoO4 Nano-Octahedra. Chinese Science Bulletin, 56, 269-274.
https://doi.org/10.1007/s11434-010-4248-3

[65] 马玉洁, 范高超, 陈洁, 黄在银. MnMoO4∙H2O纳米棒生长过程的原位热动力学研究[J]. 高等学校化学学报, 2012, 33(8): 1813-1819.

[66] Guo, Y.X., Chen, J., Huang, Z.Y., Fan, G.C. and Sun, J.L. (2012) Investigation of In Situ Growth of SrMoO4 Nanoplates by Microcalorimetry. Chemical Research in Chinese Universities, 28, 1058-1060.

[67] Li, X.X., Fan, G.C. and Huang, Z.Y. (2015) Synthesis and Surface Thermodynamic Functions of CaMoO4 Nanocakes. Entropy, 17, 2741-2748.
https://doi.org/10.3390/e17052741

[68] 黄在银, 范高超, 谭学才. 化学热力学方法及其纳米物理化学应用[M]. 北京: 科学出版社, 2016: 126 -174.

[69] 王路得, 黄在银, 郭云霄, 王腾辉. 八面体纳米钼酸钡的原位生长及形成机理[J]. 高等学校化学学报, 2011, 32(12): 2838-2843.

[70] 马玉洁. 钼酸锰纳米材料的可控合成及原位生长热动力学研究[D]: [硕士学位论文]. 南宁: 广西民族大学, 2012.

[71] Wang, L.D., Ma, Z., Liu, S.G. and Huang, Z.Y. (2014) In Situ Growth Mechanism and the Thermodynamic Functions of Zinc Oxide Nano-Arrays and Hierarchical Structure. Journal of Thermal Analysis and Calorimetry, 115, 201-208.
https://doi.org/10.1007/s10973-013-3173-5

[72] Chen, J., Ma, Y.J., Fan, G.C., Li, Y.F., Jiang, J.Y. and Huang, Z.Y. (2011) Thermokinetic Study on Growth Process of CdS Nanocrystals by In Situ Microcalorimetry. Materials Letters, 65, 1768-1771.
https://doi.org/10.1016/j.matlet.2011.03.038

[73] Jiang, J.Y., Huang, Z.Y., Xiao, Q., Mi, Y. and Li, Y.F. (2010) Synthesis and Growth Thermodynamic Studies of CdS Nanocrystals Using Isothermal Titration Calorimetry. Thermochimica Acta, 503, 136-140.
https://doi.org/10.1016/j.tca.2010.03.010

[74] Bai, G.Y., Wang, Y.J., Nichifor, M. and Bastos, M. (2013) Critical Role of the Degree of Substitution in the Interaction of Biocompatible Cholic Acid-Modified Dextrans with Phosphatidylcholine Liposomes. Langmuir, 29, 13258-13268.
https://doi.org/10.1021/la402754y

[75] Li, X.X., Huang, Z.Y., Liu, Z.J., Diao, K.S., Fan, G.C., Huang, Z.Y. and Tan, X.C. (2016) In Situ Photocalorimetry: An Alternative Approach to Study Photocatalysis by Tracing Heat Changes and Kinetics. Applied Catalysis B: Environmental, 181, 79-87.
https://doi.org/10.1016/j.apcatb.2015.07.036

分享
Top