球形GaAs量子点中心类氢杂质基态束缚能的研究
The Ground Binding Energy of a Center Hydrogenic Impurity in Spherical GaAs Quantum Dots
作者: 陈真梅 , 陈 妮 , 莫运海 , 吴智辉 , 袁建辉 :广西医科大学物理教研室,广西 南宁; 张志海 :盐城师范学院新能源与电子工程学院,江苏 盐城;
关键词: 球形量子点; 有限差分法; 类氢杂质; 能谱和束缚能; Quantum Dot; Finite Difference Method; Hydrogenic Impurity; Energy Spectra and Binding Energy
摘要:Abstract: The ground binding energy of a hydrogenic impurity in spherical GaAs quantum dots is investi-gated by using finite difference method. The electron bound in GaAs quantum dots can be viewed as a confined parabolic potential to the electron due to the parabolicity in the bottom of the conduction band of GaAs material. The results show that the ground binding energy of a hydrogenic impurity in spherical GaAs quantum dots closely depends on the radius of quantum dot and the parabolic potential parameter related to the conduction band. It is easily found that the ground binding energy of a hydrogenic impurity changes considerably with the increasing of the radius of quantum dot from a small radius. As the radius of quantum dot attains a certain value, the change of the radius of quantum dot has little impact on the ground binding energy of a hydrogenic impurity; however, the parabolic potential parameter can considerably change the ground binding energy of a hydrogenic impurity for a large of radius of quantum dot. This is the result of the coupling and competition between the confining widths of the well potential and parabolic potential.
文章引用: 陈真梅 , 陈 妮 , 莫运海 , 吴智辉 , 袁建辉 , 张志海 (2017) 球形GaAs量子点中心类氢杂质基态束缚能的研究。 现代物理, 7, 155-162. doi: 10.12677/MP.2017.74017
参考文献
[1]
Chakraborty, T. (1999) Quantum Dots. Elsevier Science, Amsterdam.
https://doi.org/10.1016/b978-044450258-2/50003-1
[2]
Reimann, S.M. and Manninen, M. (2002) Electronic Structure of Quantum Dots. Reviews of Modern Physics, 74, 1283.
https://doi.org/10.1103/RevModPhys.74.1283
[3] Bányai, L. and Koch, S.W. (1993) Semiconductor Quantum Dots. World Scientific, Singapore.
[4] 郑厚植. 人工物性剪裁[M]. 长沙: 湖南科学技术出版社, 1997.
[5]
Kiravittaya, S., Rastelli, A. and Schmidt, O.G. (2009) Advanced Quantum dot Configurations. Reports on Progress in Physics, 72, 046502.
https://doi.org/10.1088/0034-4885/72/4/046502
[6] Harrison, P. (2016) Quantum Wells, Wires And Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. 4th Edition, Wiley, Hoboken.
[7]
Xiao, Z., Zhu, J. and He, F. (1996) Effect of the Parabolic Potential on the Binding Energy of a Hydrogenic Impurity in a Spherical Quantum Dot. Superlattices & Microstructures, 19, 137-149.
https://doi.org/10.1006/spmi.1996.0017
[8]
Varshni, Y.P. (1998) Simple Wavefunction for an Impurity in a Parabolic Quantum Dot. Superlattices & Microstructures, 23, 145-149.
https://doi.org/10.1006/spmi.1997.0506
[9] 陈皓, 高明, 汪青杰. 用有限差分法解薛定谔方程[J]. 沈阳航空航天大学学报, 2005, 22(1): 87-88.
[10] 刘建军, 翟利学. 有限差分法解能量本征方程[J]. 北京工业大学学报, 2008, 34(3): 325-331.
[11]
Yuan, J.-H., Chen, N., Zhang, Z.-H., Su, J., Zhou, S.-F., Lu, X.-L. and Zhao, Y.-X. (2016) Energy Spectra and the Third-Order Nonlinear Optical Properties in GaAs/AlGaAs Core/Shell Quantum Dots with a Hydrogenic Impurity. Superlattices and Microstructures, 100, 957-967.
https://doi.org/10.1016/j.spmi.2016.10.068
[12]
Zhang, Z.-H., Zhuang, G.-C., Guo, K.-X. and Yuan, J.-H. (2016) Donor-Impurity-Related Optical Absorption and Refractive Index Changes in GaAs/AlGaAs Core/Shell Spherical Quantum Dots. Superlattices and Microstructures, 100, 440-447.
https://doi.org/10.1016/j.spmi.2016.09.054