拟单调中立型反应扩散方程行波解的唯一性
Uniqueness of Traveling Wave Solutions for a Quasi-Monotone Reaction-Diffusion Equation with Neutral Type
作者: 刘玉彬 :惠州学院数学与大数据学院,广东 惠州;
关键词: 中立型反应扩散方程; 行波解; 拟单调反应项; 唯一性; Reaction-Diffusion Equation with Neutral Type; Traveling Wave Solution; Quasi-Monotone Reaction; Uniqueness
摘要:


Abstract: In present paper, we focus on the uniqueness of traveling wave solutions for a quasi-monotone reaction-diffusion equation with neutral type. By using the Ikehara’s Theorem, we firstly establish the asymptotic exponent properties of monotone traveling wave solution with speed



文章引用: 刘玉彬 (2017) 拟单调中立型反应扩散方程行波解的唯一性。 理论数学, 7, 310-321. doi: 10.12677/PM.2017.74041
参考文献
[1] Schaaf, K.W. (1987) Asymptotic Behavior and Traveling Wave Solutions for Parabolic Functional Differential Equations. Transactions of the American Mathematical Society, 302, 587-615.
[2] Chow, S.N., Paret, M.J. and Shen, W.X. (1998) Travelling Waves in Lattice Dynamical Systems. Journal of Differential Equations, 149, 248-291.
[3] Ma, S.W. (2001) Traveling Wavefronts for Delayed Reaction-Diffusion Systems via a Fixed Point Theorem. Journal of Differential Equations, 171, 294-314.
[4]
Al-Omari, J. and Gourley, S.A. (2002) Monotone Traveling Fronts in Age-Structured Reaction Diffusion Model of a Single Species. Journal of Mathematical Biology, 45, 294-312.
https://doi.org/10.1007/s002850200159
[5]
Al-Omari, J. and Gourley, S.A. (2005) Monotone Wavefront in a Structured Population Model with Distributed Maturation Delay. IMA Journal of Applied Mathematics, 70, 858-879.
https://doi.org/10.1093/imamat/hxh073
[6] 黄建华, 黄立宏. 高维格上时滞反应扩散方程的行波解[J]. 应用数学学报, 2005(1): 100-113.
[7] Liang, X. and Zhao, X.Q., (2007) Asymptotic Spreading Speeds of Spread and Traveling Waves for Monotone Semiflows with Application. Communications on Pure Applied Mathematics, 60, 1-40. Erratum: (2008) 61, 137-138.
[8] Wang, H.Y. (2009) On the Existence of Traveling Waves for Delayed Reaction-Diffusion Equations. Journal of Differential Equations, 247, 887-905.
[9] 梁飞, 高洪俊. 非局部时滞反应扩散方程行波解的存在性[J]. 数学物理学报, 2011(5): 1273-1281.
[10] Fang, J. and Zhao, X.Q. (2014) Traveling Waves for Monotone Semiflows with Weak Compactness. SIAM Journal on Mathematical Analysis, 46, 3678-3704.
[11] 黄业辉, 翁佩萱. 一个具有非局部效应的非线性周期反应扩散方程的渐近形态[J]. 数学学报, 2014(5): 1011- 1030.
[12] 尚德生, 张耀明. 具有分布时滞的一类反应扩散方程的波前解的存在性[J]. 生物数学学报, 2015(3): 415-424.
[13] 边乾坤, 张卫国, 余志先. 具有时滞的时间离散反应扩散系统行波解的存在性[J]. 应用数学, 2016(2): 359-369.
[14] Diekmann, O. and Kapper, H.G. (1978) On the Bounded Solutions of a Nonlinear Convolution Equation, Nonlinear Analysis. Theory, Methods and Applications, 2, 721-737.
[15] Fang, J. and Zhao, X.Q. (2010) Existence and Uniqueness of Traveling Waves for Non-Monotone Integral Equations with Applications. Journal of Differential Equations, 248, 2199-2226.
[16]
Aguerrea, M., Gomez, C. and Trofimchuk, S. (2012) On Uniqueness of Semi-Wave Fronts: Diekmann-Kapper Theory of a Nonlinear Convolution Equation Re-Visited. Mathemtische Annalen, 354, 73-109.
https://doi.org/10.1007/s00208-011-0722-8
[17] Xu, Z.Q. and Xiao, D.M. (2016) Spreading Speeds and Uniqueness of Traveling Waves for a Reaction Diffusion Equation with Spatio-Temporal Delays. Journal of Differential Equations, 260, 268-303.
[18]
Chen, X.F. and Guo, J.S. (2003) Uniqueness and Existence of Traveling Waves for Discrete Quasilinear Monostable Dynamics. Mathematische Annalen, 326, 123-146.
https://doi.org/10.1007/s00208-003-0414-0
[19]
Carr, J. and Chmaj, A. (2004) Uniqueness of Traveling Waves for Nonlocal Monostable Equations. Proceedings of American Mathematical Society, 132, 2433-2439.
https://doi.org/10.1090/S0002-9939-04-07432-5
[20] Ma, S.W. and Zou, X.F. (2005) Existence, Uniqueness and Stability of Travelling Waves in a Discrete Reaction-Diffusion Monostable Equation with Delay. Journal of Differential Equations, 217, 54-87.
[21]
Aguerrea, M., Trofimchuk, S. and Valenzuela, G. (2008) Uniqueness of Fast Travelling Fronts in Reaction-Diffusion Equations with Delay. Proceedings of the Royal Society A, 464, 2591-2608.
https://doi.org/10.1098/rspa.2008.0011
[22] Guo, J.S. and Wu, C.H. (2008) Existence and Uniqueness of Traveling Waves for a Monostable 2-D Lattice Dynamical System. Osaka Journal of Mathematics, 45, 327-346.
[23] Wu, S.L. and Liu, S.Y. (2009) Uniqueness of Non-Monotone Traveling Waves for Delayed Reaction-Diffusion Equations. Applied Mathematics Letters, 22, 1056-1061.
[24] Zhao, H.Q., Weng, P.X. and Liu, S.Y. (2014) Uniqueness and Stability of Traveling Wave Fronts for an Age-Structured Population Model in a 2D Lattice Strip. Communications in Nonlinear Science and Numerical Simulation, 19, 507-519.
[25] Yang, Y.R. and Liu, N.W. (2014) Monotonicity and Uniqueness of Traveling Waves in Bistable Systems with Delay. Electronic Journal of Differential Equations, No. 2, 1-12.
[26] Liu, Y.B. and Weng, P.X. (2015) Asymptotic Pattern for a Partial Neutral Functional Differential Equation. Journal of Differential Equations, 258, 3688-3741.