求解积分方程的多尺度快速配置法
Multiscale Collocation Methods for Integral Equations

作者: 罗兴钧 , 李丽君 , 张荣 :赣南师范大学数学与计算机科学学院,江西 赣州;

关键词: 交替迭代法扇形算子多尺度配置法Alternating Iterative Methods A Sectorial Operator Multiscale Collocation Methods

摘要: Banach空间中研究求解第一类Fredholm积分方程的多尺度配置方法。在积分算子是扇形紧算子时,采用Blance原理,给出迭代停止的选择方法,确保了近似解的最优收敛率。最后,给出算例说明了算法的有效性。

Abstract: Multiscale collocation methods are developed for solving ill-posed Fredholm integral equations of the first kind in Banach spaces. The optimal convergence rate of solution is given when the method is terminated by the balancing discrepancy principle. Finally, numerical experiments are given to illustrate the efficiency of the proposed algorithm.

文章引用: 罗兴钧 , 李丽君 , 张荣 (2017) 求解积分方程的多尺度快速配置法。 应用数学进展, 6, 456-467. doi: 10.12677/AAM.2017.64054

参考文献

[1] Engl, H.W., Hanke, M. and Neubauer, A. (1996) Regularization of Inverse Problems, Kluwer, Dordrecht, 2-18.
https://doi.org/10.1007/978-94-009-1740-8

[2] Groetsch, C.W. (1984) The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Research Notes in Mathematics 105, Pitman, Boston.

[3] Chen, Z., Micchelli, C.A. and Xu, Y. (2002) Fast Collocation Methods for Second Kind Integral Equations. SAIM Jourrnal on Numerical Analysis, 40, 344-375.
https://doi.org/10.1137/S0036142901389372

[4] Chen, Z., Xu, Y. and Yang, H. (2008) Fast Collocation Methods for Solving Ill-Posed Integral Equations of the First Kind. Inverse Problems, 24, 1-21.
https://doi.org/10.1088/0266-5611/24/6/065007

[5] Chen, Z., Wu, B. and Xu, Y. (2008) Fast Collocation Method for High-Dimensional Weakly Singular Integral Equations. Journal on Numerical Analysis, 20, 49-92.
https://doi.org/10.1216/jie-2008-20-1-49

[6] Chen, Z., Cheng, S., Nelakanti, G. and Yang, H. (2010) A Fast Multiscale Galerkin Method for the First Kind Ill-Posed Integral Equations via Tikhonov Regularization. International Journal of Computer Mathematics, 87, 565-582.
https://doi.org/10.1080/00207160802155302

[7] Luo, X., Li, F. and Yang, S. (2012) A Posteriori Parameter Choice Strategy for Fast Multiscale Methods Solving Ill-Posed Integral Equations. Advances in Computational Mathematics, 36, 299-314.
https://doi.org/10.1007/s10444-011-9229-9

[8] Plato, R. (1996) On the Discrepancy Principle for Iterative and Parametric Methods to Solve Linear Ill-Posed Equations. Numerische Mathematik, 75, 99-120.
https://doi.org/10.1007/s002110050232

[9] Solodky, S.G. (2007) Economic Discretization Scheme for the Nonstationary Iterated Tikhonov Method. Journal of Optimization Theory and Applications, 132, 21-39.
https://doi.org/10.1007/s10957-006-9058-z

[10] Pereverzev, S.V and Schock, E. (2005) On the Adaptive Selection of the Parameter in Regularization of Ill-Posed Problems. SIAM Journal on Numerical Analysis, 43, 2060-2076.
https://doi.org/10.1137/S0036142903433819

分享
Top