M角数恒等式及其应用—从M角数谈起
The Identities of M-Gonal Number with Its Application—M-Gonal Numbers Revisited
作者: 郭铭浩 :上海交通大学生物医学工程学院,上海; 郭志成 :北方设计研究院,河北 石家庄;
关键词: M角数; Pythagorean方程; 分拆; M-Gonal Number; Pythagorean Equation; Partitions
摘要:Abstract: In this paper, we present some arithmetic relationships among same-level M-Gonal numbers in a specific situation. We also illustrate some arithmetic relations on M-Gonal numbers who are related with Pythagorean Triangles Number. A few special cases are discussed to obtain some interesting results.
文章引用: 郭铭浩 , 郭志成 (2017) M角数恒等式及其应用—从M角数谈起。 理论数学, 7, 250-254. doi: 10.12677/PM.2017.74032
参考文献
[1] Dickson, E.L. (2010) History of the Theory of Numbers. Diophantine Analysis, 2, 6-18.
[2] Kato, K., Kurokawa, N. and Saito, T. (2005) Number Theory 1: Fermat’s dream. Originally published in Japanese by Iwanami Shoten Publishers, Tokyo.
[3] 闵嗣鹤, 严士健. 初等数论(第二版) [M]. 北京:北京大学出版社, 2003: 271-275.
[4] Kato, K., Kurokawa, N. and Saito, T. (2005) Number Theory 2: Introduction to Class Field Theory. Originally published in Japanese by Iwanami Shoten Publishres, Tokyo.
[5] 牛顿. 自然哲学之数学原理, 宇宙体系[M]. 武汉: 武汉出版社, 1992.
[6] 俞允强. 广义相对论引论[M]. 第2版. 北京: 北京大学出版社, 1997.
[7]
Euler, L. (1988) Introduction to Analysis of the Infinite. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-1021-4
[8]
Koch, H. and Andrews, G.E. (1979) The Theory of Partitions. (Encyclopedia of Mathematics and Its Applications) 2. London-Amsterdam-Don Mills-Sydney-Tokyo, Addison-Wesley Publ. Company 1976. XIV, 255 S. $ 16.50. ZAMM— Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 59, 285-285.
https://doi.org/10.1002/zamm.19790590632
[9] Hardy, G.H. (1981) An Introduction to the Theory of Numbers. The English Language Book Society and Oxford Univ. Pr, London.