共混法制备纳米KF/γ-Al2O3催化制备生物柴油的研究
Study of Biodiesel Production Catalyzed by Nano KF/γ-Al2O3 Using Blending Method

作者: 万岳瞻 , 李 娜 , 乔晓花 , 胡令媛 , 常飞琴 , 汤 颖 :西安石油大学化学化工学院,陕西 西安; 王 珉 , 王小莉 :陕西延长石油能源科技有限公司,陕西 西安;陕西省醇醚及生物质能源工程研究中心,陕西 西安;

关键词: 纳米固体碱酯交换生物柴油Nano Solid Base Transesterification Biodiesel

摘要:
通过共混法制备KF/γ-Al2O3纳米固体碱,以此为催化剂催化甲醇–油脂酯交换制备生物柴油。详细考察了KF负载量、共混反应温度、共混反应时间等因素对催化剂活性的影响,并与不同方法制备的KF/γ-Al2O3活性进行比较。实验结果显示,共混法制备的KF/γ-Al2O3的催化性能较浸渍法KF/γ-Al2O3明显提高。纳米KF/γ-Al2O3的最佳制备条件是:KF/γ-Al2O3摩尔比1.30:1,65℃反应2 h,300℃煅烧2 h。当醇/油比为8:1,催化剂用量5%,共混温度65℃,反应70 min生物柴油产率达到96.47%,与浸渍法KF/γ-Al2O3相比较,相同条件下生物柴油产率提高60%。

Abstract: In this paper, the nano solid base catalyst was prepared over γ-Al2O3 particles supported with KF. The catalytic performance of nano catalyst for transesterification of methanol and rapeseed oil to biodiesel production has been investigated. The factors to influence the reaction activity including the loading of active component KF on the catalyst, the reacting temperature, reacting time, calcinating temperature and time were investigated. The experimental results show that catalytic property of nano catalyst prepared by blending was better than impregnation method. The nano solid alkali prepared at 65˚C loaded with 1.30:1 molar ratio of KF•2H2O to γ-Al2O3, exhibits a high catalytic activity that higher biodiesel yield of 96.47%, which was 60% higher than the yield over KF•2H2O/γ-Al2O3 prepared by impregnation method.

文章引用: 万岳瞻 , 李 娜 , 乔晓花 , 胡令媛 , 常飞琴 , 王 珉 , 王小莉 , 汤 颖 (2017) 共混法制备纳米KF/γ-Al2O3催化制备生物柴油的研究。 可持续能源, 7, 61-68. doi: 10.12677/SE.2017.73007

参考文献

[1] 张恬, 袁银男. 生物柴油的环境效益与社会经济效益[J]. 能源环境保护, 2005, 19(2): 16-19.

[2] 曾少军. 全球能源与环境现状及前景[J]. 国际经济分析与展望, 2013, 5(12): 1830-1835.

[3] 李雪梅, 刘守庆, 刘翔以. 生物柴油制备中非均相催化剂的研究进展[J]. 云南化工, 2008, 35(1): 70-73.

[4] 伍丹, 施永聪. 固体氧化钙催化制备可再生绿色能源生物柴油[J]. 安徽农业科学, 2008, 36(13): 5689-5690.

[5] 黄慨, 颜涌捷, 陈晴, 等. 钙镁负载型固体碱制备生物柴油的研究[J]. 太阳能学报, 2009, 30(2): 249-254.

[6] Wen, L.B., Wang, Y., Lu, D.L., et al. (2010) Preparation of KF/CaO Nanocatalyst and Its Application in Biodiesel Production from Chinese Tallow Seed Oil. Fuel, 89, 2267-2271.
https://doi.org/10.1016/j.fuel.2010.01.028

[7] 张志刚, 袁媛, 刘昌胜. 溶胶–凝胶法制备纳米氧化镁[J]. 硅酸盐学报, 2005, 33(8): 968-974.

[8] 陈杰博, 苏金为, 祁建民, 等. 纳米固体碱CaO-ZrO2催化红麻籽油制备生物柴油[J]. 应用化学, 2011, 28(3): 268- 273.

[9] 刘庆禄, 林波. 纳米材料与技术在废水处理中的应用及前景[J]. 环境科学与管理, 2007, 32(11): 98-101.

[10] 樊东黎. 纳米技术和纳米材料的发展和应用[J]. 金属热处理, 2011, 36(2): 125-132.

[11] 郭登峰, 李为民, 潘剑波, 等. 钙镁负载型固体碱催化剂制备生物柴油[J]. 应用化学, 2007, 24(10): 1149-1152.

[12] 李群. 纳米材料的制备与应用技术[M]. 北京: 化学工业出版社, 2008.

[13] 张甄, 付彪, 刘海燕, 等. 纳米复合催化剂的研究进展[J]. 化学与生物工程, 2013, 30(4): 14-17.

[14] Zhang, X.Y., Ma, Q., Cheng, B.B., et al. (2012) Research on KOH/La-Ba-Al2O3 Catalysts for Biodiesel Production via Transesterification from Microalgae Oil. Journal of Natural Gas Chemistry, 21, 774-779.
https://doi.org/10.1016/S1003-9953(11)60431-3

[15] Liu, Q., Xin, R.R., Li, C.C., et al. (2013) Application of Red Mud as a Basic Catalyst for Biodiesel Production. Journal of Environmental Sciences, 25, 823-829.
https://doi.org/10.1016/S1001-0742(12)60067-9

分享
Top