皖南地区大型韧性剪切带的精确厘定
Accurately Determined on the Large Ductile Shear Zone in Southern Anhui

作者: 陈昌明 , 王健 , 王积善 , 张均 :中国地质大学(武汉)资源学院,湖北 武汉;

关键词: 大型韧性剪切带璜茅–五城–屯溪剪切带皖南地区Large-Ductile Shearzone Huangmao-Wucheng-Tunxi Shear Zone Southern Anhui

摘要: 皖南地区发育多条北东向大型韧性剪切带,其发育在不同地质体的边界。本文利用天井山、小贺、白石坑、田子坑、韩家、大片等6条重要实测构造地质剖面,和大量室内显微构造的专题研究,从构造几何学、构造岩石学、构造运动学等方面进行了璜茅–五城–屯溪韧性剪切带的精确厘定。阐述了韧性剪切带的延伸方向、规模、剪切变形特征、变形条件及形成的变质相。

Abstract: There are many large size ductile shear zones of northeastern run in southern Anhui province. And they were developed in the boundary of different geological bodies. This paper uses the Tianjingshan section, Xiaohe section, Baishikeng section, Tianzikeng section, Hanjia section and Dapian section that 6 geological sections and a large number of microstructures research to precise determination the Huangmao-Wucheng-Tunxi ductile shear zone from the structural geometry and structural petrology, structural kinematics etc. And we described the ductile shear zone about the extension direction, scale, shear deformation characteristics, deformation condition and the metamorphic facies.

文章引用: 陈昌明 , 王健 , 王积善 , 张均 (2017) 皖南地区大型韧性剪切带的精确厘定。 地球科学前沿, 7, 366-375. doi: 10.12677/AG.2017.73040

参考文献

[1] 地质队安徽省地矿局. 安徽省休宁县天井山金矿普查报告[R]. 安徽黄山, 1986.

[2] 王郁. 皖南小贺——古汉金矿化带及其地质意义[J]. 冶金地质动态, 1990(5): 3-6.

[3] 周涛发, 袁峰, 侯明金, 等. 江南隆起带东段皖赣相邻区的成矿条件与资源潜力对比研究[J]. 自然科学进展, 2003, 13(10): 30-35.

[4] 郑新建, 程金华, 胡文华, 等. 安徽省休宁县小贺毒砂——多金属伴生金矿地质地化特征及找金前景浅析[J]. 安徽地质, 2006, 16(3): 185-189.

[5] 吴建阳, 张均. 从天井山金矿和金山金矿的成矿特征对比谈天井山金矿的找矿前景及突破方向[J]. 矿床地质, 2010, 29(S1): 1003-1004.

[6] 段留安, 杨晓勇, 孙卫东, 等. 皖南天井山金矿床地质-地球化学特征及找矿前景[J]. 地质学报, 2011, 85(6): 965-978.

[7] 杜建国, 许卫. 安徽省金矿资源潜力评价成果报告[R]. 安徽合肥, 2011.

[8] 杨果林. 皖南休宁县白石坑–上村一带金矿成矿地质特征及找矿前景浅析[J]. 四川地质学报, 2012, 32(S1): 13-16.

[9] 薛怀民, 马芳, 宋永勤, 等. 江南造山带东段新元古代花岗岩组合的年代学和地球化学: 对扬子与华夏地块拼合时间与过程的约束[J]. 岩石学报, 2010, 26(11): 3215-3244.

[10] 张定源, 王爱国, 鲍晓明, 等. 安徽天井山金矿区韩家岩体成因与成矿意义[J]. 资源调查与环境, 2014, 35(1): 1-11.

[11] 姜妍岑, 谢玉玲, 唐燕文, 等. 安徽天井山金矿成矿流体特征及成矿过程初探[J]. 岩石矿物学杂志, 2013, 32(3): 329-340.

[12] 吴荣新, 郑永飞, 吴元保. 皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究[J]. 岩石学报, 2005, 21(3): 587-606.

[13] 赵玲, 陈志洪. 皖南谭山岩体的锆石定年及地质意义[J]. 资源调查与环境, 2014, 35(3): 185-191.

[14] 胡玲, 刘俊来, 纪沫, 等. 变形显微构造识别手册[M]. 北京: 地质出版社, 2009.

[15] Passchier, C.W. and Trouw, R.A.J. (1996) Microtectonics. Springer-Verlag, Berlin, 25-253.

[16] Stipp, M., Stünitz, H., Heilbronner, R., et al. (2002) The Eastern Tonale Fault Zone: A ‘Natural Laboratory’ for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700˚C. Journal of Structural Geology, 24, 1861- 1884.
https://doi.org/10.1016/S0191-8141(02)00035-4

[17] Brunel, M. and Maliakov, Y. (1972) Utilisation de I’orientation preferentielle du quartz comme marqueur de la deformation hercynienne dans le granite prehercynien du Mendic (Massif Central francais). Comptes Rendus de l’Académie des Sciences Paris, 274, 2627-2630.

[18] Hara, I., Takeda, K. and Kimura, T. (1973) Preferred Lattice Orientation of Quartz in Shear Deformation. Journal of Science of the Hiroshima University, 7, 1-11.

[19] Mainprice, D., Bouchez, J.L., Blumenfeld, P., et al. (1986) Dominant c Slip in Naturally Deformed Quartz: Implications for Dramatic Plastic Softening at High Temperature. Geology, 14, 819-822.
https://doi.org/10.1130/0091-7613(1986)14<819:DCSIND>2.0.CO;2

[20] 嵇少丞. 部分熔融的构造地质意义(1): 变形机制转变的实验研究[J]. 地质科学, 1988(4): 347-356.

[21] 周永胜, 何昌荣. 地壳岩石变形行为的转变及其温压条件[J]. 地震地质, 2000, 22(2): 167-178.

[22] Hippertt, J., Rocha, A., Lana, C., et al. (2001) Quartz Plastic Segregation and Ribbon Development in High-Grade Striped Gneisses. Journal of Structural Geology, 23, 67-80.
https://doi.org/10.1016/S0191-8141(00)00129-2

[23] Fitz Gerald, J.D. and Stünitz, H. (1993) Deformation of Granitoids at Low Metamorphic Grade. I: Reactions and Grain Size Reduction. Tectonophysics, 221, 269-297.
https://doi.org/10.1016/0040-1951(93)90163-E

[24] Ross, J.V. and Lewis, P.D. (1989) Brittle-Ductile Transition: Semi-Brittle Behavior. Tectonophysics, 167, 75-79.
https://doi.org/10.1016/0040-1951(89)90295-3

[25] Fliervoet, T.F., White, S.H. and Drury, M.R. (1997) Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist- and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia. Journal of Structural Geology, 19, 1495-1520.
https://doi.org/10.1016/S0191-8141(97)00076-X

[26] 徐海军, 金淑燕, 郑伯让. 岩石组构学研究的最新技术——电子背散射衍射(EBSD)[J]. 现代地质, 2007, 21(2): 213-225.

[27] 刘俊来, 曹淑云, 邹运鑫, 等. 岩石电子背散射衍射(EBSD)组构分析及应用[J]. 地质通报, 2008, 27(10): 1638-1645.

分享
Top