不同瓦斯爆炸强度作用下管道壁面冲击破坏特征数值模拟
Numerical Simulation on Shock Failure Characteristics of Pipe Surface under Different Gas Explosion Strengths

作者: 贾真真 , 叶 青 * , 柳 伟 , 鲁 义 :湖南科技大学资源环境与安全工程学院,湖南 湘潭;

关键词: 瓦斯爆炸破坏特征爆炸强度数值模拟管道壁面Gas Explosion Failure Characteristics Explosion Strengths Numerical Simulation Pipe Surface

摘要:
为了获取管道壁面在瓦斯爆炸冲击作用下的破坏特性,利用LS-DYNA建立了管道内瓦斯爆炸物理模型和数学模型,模拟了管道内不同爆炸强度的瓦斯爆炸冲击破坏特性,模拟结果表明:在瓦斯爆炸瞬间,爆炸冲击波直接加载在管道壁面及封闭端,封闭端隅角处冲击波汇聚叠加,致使管道封闭端发生膨胀变形。随着瓦斯爆炸的进行,封闭端区域内出现了负压区,空气回流压缩,冲击波都汇聚在“Z”型槽里,此时管道壁面变薄,出现了“阶梯式”破坏特征。随着瓦斯爆炸强度的增加,爆炸冲击波荷载超过了材料的屈服强度,管道封闭端与内壁面结合隅角部位,内壁面沿管道出现了“Z”型破坏。随着爆炸荷载的持续加载,壁面最终出现了“阶梯式”的破坏和张开型的扩展现象。

Abstract: In order to obtain the failure characteristics of the pipe surface under the shock wave action of gas explosion, the physical model and mathematical model of gas explosion in pipe are established by LS-DYNA, and the shock failure characteristics of gas explosion under different explosion strengths in pipe are simulated. The result shows that at the instant of gas explosion, the shock wave is directly loaded on the surface and the closed end of the pipe, and the shock waves at the corner of closed end are converged and superposed, which cause expansion and deformation at the closed end of pipe. With the continuation of gas explosion, the negative pressure zone is appeared in the closed end and the air reflux is compressed; the shock waves are converged in the “Z type” groove; at this time, the pipe surface becomes thin, and the “ladder type” failure characteristics appear on this surface. With the increase of the gas explosion strength, when the shock wave load exceeds the yield strength of the pipe, the “Z type” failure appears on the inner surface of the closed end of the pipe. With the sustained loading of gas explosion loads, the failure of the “ladder type” and the expansion phenomenon of “open type” appear at the pipe surface.

文章引用: 贾真真 , 叶 青 , 柳 伟 , 鲁 义 (2017) 不同瓦斯爆炸强度作用下管道壁面冲击破坏特征数值模拟。 矿山工程, 5, 32-42. doi: 10.12677/ME.2017.53005

参考文献

[1] 林柏泉, 菅从光, 张辉. 管道壁面散热对瓦斯爆炸传播特性影响的研究[J]. 中国矿业大学学报, 2009(1): 1-4.

[2] 叶青, 林柏泉. 受限空间瓦斯爆炸传播特性[M]. 徐州: 中国矿业大学出版社, 2012.

[3] 洪溢都, 林柏泉, 朱传杰. 开口型管道内瓦斯爆炸冲击波动压的数值模拟[J]. 爆炸与冲击, 2016(2): 198-209.

[4] Ferrara, G., Willacy, S.K., Phylaktou, H.N., et al. (2007) Venting of Gas Explosion through Relief Ducts: Interaction between Internal and External Explosions. Journal of Hazardous Materials, 155, 358-368.

[5] 赵军凯, 王磊, 滑帅, 曹旭. 瓦斯浓度对瓦斯爆炸影响的数值模拟研究[J]. 矿业安全与环保, 2012(4): 1-4 + 92.

[6] Ye, Z. and Jia, Z. (2014) Effect of the Bifurcating Duct on the Gas Explosion Propagation Characteristics. Combustion, Explosion, and Shock Waves, 50, 424-428.
https://doi.org/10.1134/S0010508214040108

[7] Ye, Q., Wang, G.X., Jia, Z. and Zheng, C. (2017) Experimental Study on the Influence of Wall Heat Effect on Gas Explosion and Its Propagation. Applied Thermal Engineering, 118, 392-397.

[8] Jia, Z. and Feng, T. (2014) Numerical Simulation on Methane Explosion Propagation in a One-Dimensional Straight Duct with Porous Metal Materials. Computer Modeling & New Technologies, 18, 275-282.

[9] Ye, Q. and Jia, Z. (2012) Propagation Characteristics of Gas Explosion in Duct with Sharp Change of Cross Sections. Disaster Advance, 15, 999-1003.

[10] 曲志明. 煤矿巷道瓦斯爆炸破坏效应研究[C]. 中国力学学会学术大会, 2005: 35-37.

[11] 杨书召, 景国勋. 矿井瓦斯爆炸冲击气流伤害研究[J]. 煤炭学报, 2009, 34(10): 1354-1357.

[12] 李雪, 许加堂, 陶文圣. 爆炸冲击对环境的破坏研究[J]. 装备环境工程, 2009, 6(3): 35-37.

[13] 李家文. 爆炸冲击波作用下结构瞬态响应分析[D]: [硕士学位论文]. 长沙: 国防科技大学, 2007.

[14] 高娜, 张延松, 胡毅亭. 温度压力对瓦斯爆炸危险性影响的实验研究[J]. 爆炸与冲击, 2016, 36(2): 218-223.

[15] 夏奎. 对地下建筑结构内部爆炸荷载取值与抗内部爆炸设计方法探讨[D]: [硕士学位论文]. 重庆: 重庆大学, 2009.

[16] 邬玉斌. 地下结构偶然性内爆炸效应研究[D]: [博士学位论文]. 哈尔滨: 中国地震局工程力学研究所, 2011.

[17] 周清. 密闭空间内爆炸引起的内壁超压分布规律及简化计算研究[D]: [硕士学位论文]. 天津: 天津大学, 2008.

分享
Top