﻿ 完备非紧黎曼流形上的射线的平行性

# 完备非紧黎曼流形上的射线的平行性The Parallelism of the Rays in a Complete Noncompact Riemannian Manifold

Abstract:
The paper generalizes the concept of the parallelism for the rays in Eucliden space to a general noncompact Riemannian manifold, proves that if the manifold has only two Busemann function with adverse signs, then the manifold is with complete parallel property. This conclusion answers Wu-Chen Problem partly.

[1] J. Cheeger, D. Gromoll. The splitting theorem for manifolds of nonnegative Ricci curvature. Journal of Differential Geometry, 1971, 6(1): 119-128.

[2] 丘成桐, 孙理察. 微分几何[M]. 北京: 科学出版社, 1988。

[3] 詹华税. 完备Riemann流形之共轭点[J]. 数学学报, 1994, 37(3): 414-419。

[4] H. S. Zhan, Z. M. Shen. The volume and topology of a clomplete Riemannian manifold. Chinese Annals of Mathematics, 2001, 22(1): 85-92.

[5] 詹华税. 关于H-WU问题[J]. 数学进展, 2000, 29(4): 362-369.

[6] 詹华税. 可定向的完备非紧具非负曲率的黎曼流形[J]. 数学进展, 2001, 30(1): 70-74.

[7] H. S. Zhan. Complete three dimensional manifolds with nonnegative Ricci curvature and two order volume growth. Southeast Asian Bulletin of Mathematics, 2000, 24(2): 341-343

[8] H. S. Zhan. The open manifold with zero ideal boundary. Southeast Asian Bulletin of Mathematics, 1999, 23(1): 153-157.

[9] H. S. Zhan. The diameter growth of an open Riemannian manifold with nonnegative sectional curvature. Southeast Asian Bulletin of Mathematics, 2004, 27(6): 1129-1132.

[10] Y. X. Liang, H. S. Zhan. The geodesics without conjugate point on a complete manifold. Tensor, New Series, 1996, 57(3): 325- 327.

[11] 詹华税. 局部对称流形上的闭测地线[J]. 厦门大学学报(自), 2003, 42(3): 150-152.

[12] 詹华税. 具有完全平行性质和非负曲率的完备黎曼流形[J]. 厦门大学学报(自), 2003, 73(43): 441-443.

[13] J. Cheeger, D. Ebin. Complete theorem in raminnian geometry. Amesterdan: North-Holland Publishing Company, 1975.

[14] 伍鸿熙, 陈维桓. 黎曼几何选讲[M]. 北京: 北京大学出版社, 1993.

[15] Z. Shen. On complete manifolds of nonnegative k-th Ricci curvature. Transations of the American Mathematical Society, 1993, 338(1): 289-309.

Top