Subdirect Sums of MB-Matrices

作者: 骆毅 , 李耀堂 :云南大学数学与统计学院,云南 昆明;

关键词: MB-矩阵子直和Z-矩阵M-矩阵矩阵分裂MB-Matrix Subdirect Sum Z-Matrix M-Matrix Matrix Splitting

摘要: 采用矩阵分裂的方法对MB-矩阵的子直和进行了研究,给出了MB-矩阵子直和仍为MB-矩阵的一些充分条件,最后用数值例子对所给结论进行了验证。

Abstract: Several sufficient conditions ensuring that the subdirect sum of MB-matrices is in the class of MB-matrices are given by using the matrix splitting. And the conclusion is illustrated by a numerical example.

文章引用: 骆毅 , 李耀堂 (2017) MB-矩阵的子直和。 应用数学进展, 6, 338-347. doi: 10.12677/AAM.2017.63039


[1] Fallat, S.M. and Johnson, C.R. (1999) Sub-Direct Sum Sand Positivity Classes of Matrices. Linear Algebra and Its Applications, 288, 149-173.

[2] Bru, R., Pedroche, F. and Szyld, D.B. (2005) Subdirect Sums of Nonsingular M-Matrices and of Their Inverse. Electronic Journal of Linear Algebra, 13, 162-174.

[3] Bru, R., Pedroche, F., Szyld, D.B. (2005) Additive Schwarz Iterations for Markov Chains. The SIAM Journal on Matrix Analysis and Applications, 27, 445-458.

[4] Frommer, A. and Szyld, D.B. (1999) Weighted Max Norms, Splittings, and Overlapping Additive Schwarz Iterations. Numerische Mathematik, 83, 259-278.

[5] Li, H.-B., Huang, T.-Z. and Li, H. (2007) On Some Subclasses of P-Matrices. Linear Algebra and Its Applications, 14, 391-405.

[6] Li, C.Q., Liu, Q.L., Gao, L. and Li, Y.T. (2016) Subdirect Sums of Nekrasov Matrices. Linear and Multilinear Algebra, 64, 208-218.

[7] Bru, R., Pedroche, F. and Szyld, D.B. (2006) Subdirect Sums of S-Strictly Diagonally Dominant Matrices. Electronic Journal of Linear Algebra, 15, 201-209.

[8] Berman, A. and Plemmons, R.-J. (1994) Nonnegative Matrices in the Mathematical Sciences. SIAM Publisher, Philadelphia.

[9] 徐仲, 陆全, 张凯院, 安小红. H-矩阵类的理论及应用[M]. 北京: 科学出版社, 2013.

[10] 王静. P-矩阵子类的一些推广及应用[J]. 广西科学院学报. 2009, 25(2): 83- 85, 91.

[11] 陈公宁. 矩阵理论与应用[M]. 北京: 科学出版社, 2007.