镍基单晶高温合金滑移系剪应力集中分析
Analysis of Shear Stress Concentration of Slip System for Nickel-Based Single Crystal Superalloys

作者: 孙万超 :中航工业飞机强度研究所,航空发动机强度研究室,陕西 西安;

关键词: 应力集中滑移系晶体取向镍基单晶剪应力集中系数Stress Concentration Slip System Crystal Orientation Nickel-Based Single Crystal Shear Stress Concentration

摘要:
为了完善晶体滑移理论及基于该理论而发展起来的低周疲劳寿命模型、蠕变寿命模型在工程中的应用及评价,提出了镍基单晶合金滑移系剪应力集中系数的相关定义。通过理论推导和有限元方法分析了镍基单晶高温合金的滑移系应力集中系数,得到以下结论:1) 各向同性材料与镍基单晶合金的应力集中效应有着明显的差异,采用各向同性材料应力集中系数处理镍基单晶合金材料是不合适的;2) 对于平面问题,滑移系剪应力集中系数只决定于构件的形状、晶体方向、而与材料的弹性常数无关;3)对于镍基单晶合金材料,应力集中系数具有晶体取向各向异性。形状与载荷条件相同下,[111]取向具有最大的应力集中系数,[011]取向次之,[001]取向最小。

Abstract: In order to perfect the crystal slip theory and its engineering application and evaluation of the low cycle fatigue and creep life model that developed on the crystal slip theory, the related definition of slip system shear stress concentration factor for nickel-based single crystal alloy was proposed .Through theoretical derivation and finite element method, the slip system stress concentration factor of nickel base single crystal superalloy was analyzed, it can be deduced that: 1) There exists obvious difference in stress concentration effect between isotropic alloy and nickel-based single crystal alloy. So it would be inappropriate to use the stress concentration coefficient of isotropic alloy to handle nickel-based single crystal alloy; 2) For plane problem, the shear stress concentration coefficient in slip system only determined by component’s shape and crystal orientation, and has nothing to do with the material elastic constants; 3) For nickel-based single crystal alloy, stress concentration coefficient is anisotropic with crystal orientation. Under the same shape and load conditions, stress concentration coefficient in [111] orientation takes its maximum, in [011] orientation second, and in [001] orientation the minimal.

文章引用: 孙万超 (2017) 镍基单晶高温合金滑移系剪应力集中分析。 自然科学, 5, 190-202. doi: 10.12677/OJNS.2017.52026

参考文献

[1] Arakere, N.K. (2004) High-Temperature Fatigue Properties of Single Crystal Superalloys in Air and Hydrogen. ASME Journal of Engineering for Gas Turbines and Power, 126, 590-603.
https://doi.org/10.1115/1.1501075

[2] Wahi, R.P., Auerswald, J., Mukherji, D., Dudka, A., Fecht, H.J. and Chen, W. (1997) Damage Mechanisms of Single Andpolycrystalline Nickel Base Superalloys SC16 and IN738LC under High Temperature LCF Loading. International Journal of Fatigue, 19, S89-S94.
https://doi.org/10.1016/S0142-1123(97)00038-8

[3] Dalal, R.P., Thomas, C.R. and Dardi, L.E. (1984) The Effect of Crystallographic Orientation on the Physical and Mechanical Properties of an Investment Cast Single Crystal Nickel-Base Superalloy. TMS-AIME, Warrendale, 185-197.

[4] Taylor, G.I. and Elam, C.F. (1925) The Plastic Extension and Fracture of Aluminum Crystals. Proceedings of the Royal Society, 108, 25-51.
https://doi.org/10.1098/rspa.1925.0057

[5] Schmid, E. (1935) Plasticity of Crystal. Oxford University Press, New York.

[6] Myoung, G.L., Wagoner, R.H. and Kim, S.J. (2008) Comparative Study of Single Crystal Constitutive Equations for Crystal Plasticity Finite Element Analysis. International Journal of Modern Physics, 22, 5388-5393.
https://doi.org/10.1142/S0217979208050541

[7] Czech, N. and Stamm, W. (1996) Thermal Cycle Fatigue Properties of Coated and Uncoated Single Crystal Superalloy. Surface and Coatings Technology, 86, 15-21.
https://doi.org/10.1016/S0257-8972(96)02947-7

[8] Antelo, M.A., Johnson, P.K., Ostolaza, K.M. and Bressers, J. (1998) Analysis of the Fracture Behaviour of an Aluminide Coating on a Single-Crystal Superalloy under Tensile Conditions. Materials Science and Engineering, A247, 40- 50.
https://doi.org/10.1016/S0921-5093(98)00477-8

[9] Czech, N. and Stamm, W. (1996) Thermal Cycle Fatigue Properties of Coated and Uncoated Single Crystal Superalloy. Surface and Coatings Technology, 86, 15-21.
https://doi.org/10.1016/S0257-8972(96)02947-7

[10] Gui, T.S., Wang, M.G., Li, T., Qian, B.J. and Xie, J. (2010) Influence of TCP Phase and Its Morphology on Creep Properties of Single Crystal Nickel-Based Superalloys. Materials Science and Engineering, A527, 5444-5451.
https://doi.org/10.1016/j.msea.2010.05.027

[11] 孙万超, 陆山. 考虑应力集中的镍基单晶合金低周疲劳公式[J]. 应用力学学报, 2013, 33(2): 273-277.

[12] 张超, 秦义校, 李艳青, 等. 桥式起重机箱型主梁典型缺陷应力集中分析[J]. 机械工程与自动化, 2012(1): 122- 123.

[13] 王子. 典型船舶焊接接头应力集中系数有限元分析[J]. 船海工程, 2012, 43(3): 4-6.

[14] 何川, 封坤, 晏启祥. 高速铁路水下盾构隧道管片内力分布规律研究[J]. 铁道学报, 2012, 34(4): 101-109.

[15] 王志良, 申林方, 姚激. 开槽预应力闸墩应力集中特性研究[J]. 水利水电技术, 2012, 43(9): 46-49.

[16] 陈亮, 郑廷银. 腹板几何尺寸变化对梯形波纹腹板工字钢梁应力集中的影响[J]. 南京工业大学学报, 2012, 34(4): 138-144.

[17] 段钢文. 桥梁结构钢筋应力集中、疲劳研究[J]. 黑龙江交通科技, 2012(2): 96.

[18] 航空工业部科学技术委员会. 应力集中系数手册[M]. 北京: 高等教育出版社, 1990.

[19] 董志航, 廖志忠. 理论应力集中系数的有限元求法[J]. 航空兵器, 2005(3): 15

[20] 陆山, 王春光, 陈军. 任意最大梯度路径轮盘模拟件设计方法[J]. 航空动力学报, 2010, 25(9): 2000-2005.

[21] Filippini, M. (2011) Notched Fatigue Strength of Single Crystals at High Temperature. Procedia Engineering, 10, 3787-3792.
https://doi.org/10.1016/j.proeng.2011.04.618

[22] 赵萍, 何清华, 李维, 等. 单晶切口试样低周疲劳特性研究[J]. 航空动力学报, 2010, 25(11): 2632-2636.

[23] Asaro, R.J. (1983) Crystal Plasticity. ASME Journal of Applied Mechanics, 50, 921-934.
https://doi.org/10.1115/1.3167205

[24] 孙万超, 陆山. 用于单晶叶片应力分析的滑移本构模型研究[J]. 推进技术, 2012, 33(5): 754-759.

[25] Arakere, N.K. and Swanson, G. (2002) Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys. ASME Journal of Engineering for Gas Turbines and Power, 124, 161-176.
https://doi.org/10.1115/1.1413767

[26] 孙万超. 镍基单晶合金力学性能及低周疲劳分析与应用[D]: [博士学位论文]. 西安: 西北工业大学, 2013.

分享
Top