酚参与的不对称C-O键形成研究进展
Progress on Asymmetric C-O Bond Formation with Phenols

作者: 张 剑 , 魏一飞 , 罗人仕 :赣南医学院,江西 赣州 ;

关键词: 不对称C-O键研究进展Phenol Asymmetric C-O Bond Study Progress

摘要:
手性芳基氧杂化合物在药物化学和临床治疗上有着及其重要的作用。酚与不同的反应底物发生不对称反应是获得此类化合物的重要途径。在手性催化剂的作用下,以酚为亲核试剂,与不同的反应底物可发生不对称取代、Oxa-Michael加成、开环、Wacker-Type环化、O-H插入等获得手性芳基氧杂化合物。近年来,酚参与不对称C-O键形成取得了较大的进展,本文将对该进展做重点介绍。

Abstract: Chiral aryl oxa-compounds are extremely important in medicinal chemistry and clinical therapies. The asymmetric reactions of phenols with different substrates are important methodologies to synthesize such species. With phenols as nucleophilic reagents, the chiral catalysts-catalyzed asymmetric reactions, such as substitution, Oxa-Michael addition, ring-opening, Wacker-Type cy-clization, O-H insertion, can be developed by reacting with different substrates to obtain such compounds. Recently, the asymmetric C-O bond formation with phenols has made a great progress. This paper will focus on the progress of the asymmetric C-O bond formation with phenols.

文章引用: 张 剑 , 魏一飞 , 罗人仕 (2017) 酚参与的不对称C-O键形成研究进展。 有机化学研究, 5, 51-69. doi: 10.12677/JOCR.2017.51008

参考文献

[1] Rej, R.K., Das, T., Hazra, S. and Nanda, S. (2013) Chemoenzymatic Asymmetric Synthesis of Fluoxetine, Atomoxetine, Nisoxetine, and Duloxetine. Tetrahedron: Asymmetry, 24, 913.

[2] Wenthur, C.J., Bennett, M.R. and Lindsley, C.W. (2014) Classics in Chemical Neuroscience: Fluoxetine (Prozac). ACS Chemical Neuroscience, 5, 14-23.
https://doi.org/10.1021/cn400186j

[3] Calow, A.D.J., Fernández, E. and Whiting, A. (2014) Total Synthesis of Fluoxetine and Duloxetine through an in Situ Imine Formation/Borylation/Transimination and Reduction Approach. Organic & Biomolecular Chemistry, 12, 6121- 6127.
https://doi.org/10.1039/C4OB01142B

[4] Motloch, P., Valterov, I. and Kotora, M. (2014) Enantioselective Allylation of Thiophene-2-Carbaldehyde: Formal Total Synthesis of Duloxetine. Advanced Synthesis & Catalysis, 356, 199-204.
https://doi.org/10.1002/adsc.201300849

[5] Iourtchenko, A. and Sinou, D. (1997) Asymmetric Palladium(0)-Catalyzed Synthesis of allylic Ethers. Journal of Molecular Catalysis A: Chemical, 122, 91.

[6] Trost, B.M. and Toste, F.D. (1998) Asymmetric O- and C-Alkylation of Phenols. Journal of the American Chemical Society, 120, 815-816.
https://doi.org/10.1021/ja972453i

[7] Trost, B.M. and Brennan, M.K. (2007) Palladium-Catalyzed Regio- and Enantioselective Allylic Alkylation of Bis Allylic Carbonates Derived from Morita-Baylis-Hillman Adducts. Organic Letters, 9, 3961-3964.
https://doi.org/10.1021/ol701585b

[8] Dong, Y., Teesdale-Spittle, P. and Hoberg, J.O. (2005) Regioselective Palladium-Catalyzed Allylic Alkylations. Tetrahedron Letters, 46, 353.

[9] Trost, B.M., Shen, H.C., Dong, L., Surivet, J.-P. and Sylvain, C. (2004) Synthesis of Chiral Chromans by the Pd-Cat- alyzed Asymmetric Allylic Alkylation (AAA): Scope, Mechanism, and Applications. Journal of the American Chemical Society, 126, 11966-11983.
https://doi.org/10.1021/ja048078t

[10] Kirsch, S.F., Overman, L.E. and White, N.S. (2007) Catalytic Asymmetric Synthesis of Allylic Aryl Ethers. Organic Letters, 9, 911-913.
https://doi.org/10.1021/ol070110b

[11] Marco-Contelles, J., Carreiras, M.C., Rodriguez, C., Villarroya, M. and Garcia, A.G. (2006) Synthesis and Pharmacology of Galantamine. Chemical Reviews, 106, 116-133.
https://doi.org/10.1021/cr040415t

[12] Zang, Y. and Ojima, I. (2013) Pd-Catalyzed Asymmetric Allylic Etherification Using Chiral Biphenol-Based Diphosphinite Ligands and Its Application for The Formal Total Synthesis of (−)-Galanthamine. The Journal of Organic Chemistry, 78, 4013-4018.
https://doi.org/10.1021/jo400355j

[13] Lopez, F., Ohmura, T. and Hartwig, J.F. (2003) Regio- and Enantioselective Iridium-Catalyzed Intermolecular Allylic Etherification of Achiral Allylic Carbonates with Phenoxides. Journal of the American Chemical Society, 125, 3426- 3427.
https://doi.org/10.1021/ja029790y

[14] Fischer, C., Defieber, C., Suzuki, T. and Carreira, E.M. (2004) Readily Available [2.2.2]-Bicyclooctadienes as New Chiral Ligands for Ir(I): Catalytic, Kinetic Resolution of Allyl Carbonates. Journal of the American Chemical Society, 126, 1628-1629.
https://doi.org/10.1021/ja0390707

[15] Kimura, M. and Uozumi, Y. (2007) Development of New P-Chiral Phosphorodiamidite Ligands Having a Pyrrolo[1,2-c]diazaphosphol-1-one Unit and Their Application to Regio- and Enantioselective Iridium-Catalyzed Allylic Etherification. The Journal of Organic Chemistry, 72, 707-714.
https://doi.org/10.1021/jo0615403

[16] Onitsuka, K., Okuda, H. and Sasai, H. (2008) Regio- and Enantioselective O-Allylation of Phenol and Alcohol Catalyzed by a Planar-Chiral Cyclopentadienyl Ruthenium Complex. Angewandte Chemie International Edition, 47, 1454.
https://doi.org/10.1021/jo0615403

[17] Trost, B.M., Rao, M. and Dieskau, A.P. (2013) A Chiral Sulfoxide-Ligated Ruthenium Complex for Asymmetric Catalysis: Enantio- and Regioselective Allylic Substitution. Journal of the American Chemical Society, 135, 18697-18704.
https://doi.org/10.1021/ja411310w

[18] Li, C. and Breit, B. (2016) Rhodium-Catalyzed Dynamic Kinetic Asymmetric Allylation of Phenols and 2-Hydrox- ypyridines. Chemistry: A European Journal, 22, 14655-14663.
https://doi.org/10.1002/chem.201603532

[19] Lysek, R., Borsuk, K., Furman, B., Kaluza, Z., Kazimierski, A. and Chmielewski, M. (2004) Strategies for the Stereocontrolled Formation of Oxygen Analogues of Penicillins and Cephalosporins. Current Medicinal Chemistry, 11, 1813- 1835.
https://doi.org/10.2174/0929867043364883

[20] Veinberg, G., Vorona, M., Shestakova, I., Kanepe, I. and Lukevics, E. (2003) article title. Current Medicinal Chemistry, 10, 1741-1757.
https://doi.org/10.2174/0929867033457089

[21] Koziol, A., Furman, B., Frelek, J., Znica, M.W., Altieri, E. and Chmielewski, M. (2009) Chiral Base-Catalyzed Enantioselective Synthesis of 4-Aryloxyazetidinones and 3,4-Benzo-5-oxacephams. The Journal of Organic Chemistry, 74, 5687-5690.
https://doi.org/10.1021/jo900821b

[22] Nicolaou, K.C., Pfefferkorn, J.A., Roecker, A.J., Cao, G.-Q., Barluenga, S. and Mitchell, H.J. (2000) Natural Product-Like Libraries Based on Privileged Structures I: General Principles and Solid Phase Synthesis of Benzopyrans. Journal of the American Chemical Society, 122, 9939-9953.
https://doi.org/10.1021/ja002033k

[23] Van Gemert, B. (1999) Benzo and Naphthopyrans (Chromenes). In: Crano, J.C. and Guglielmetti, R.J., Eds., Organic Photochromic and Thermochromic Compounds, Vol. 1, Chapter 3, Plenum, New York, 111-140.

[24] Govender, T., Hojabri, L., Moghaddam, F.M. and Arvidsson, P.I. (2006) Organocatalytic Synthesis of Chiral Benzopyrans. Tetrahedron: Asymmetry, 17, 1763.

[25] Sund, H., Ibrahem, I., Zhao, G.-L., Eriksson, L. and Cordova, A. (2007) Catalytic Enantioselective Domino Oxa‐Michael/Aldol Condensations: Asymmetric Synthesis of Benzopyran Derivatives. Chemistry: A European Journal, 13, 574-581.
https://doi.org/10.1002/chem.200600572

[26] Luo, S.-P., Li, Z.-B., Wang, L.-P., Guo, Y., Xia, A.-B. and Xu, D.-Q. (2009) Chiral Amine/Chiral Acid as an Excellent Organocatalytic System for the Enantioselective Tandem Oxa-Michael-Aldol Reaction. Organic & Biomolecular Chemistry, 7, 4539-4546.
https://doi.org/10.1039/b910835a

[27] Li, H., Wang, J., E-Nunu, T., Zu, L., Jiang, W., Wei, S. and Wang, W. (2007) One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction. Chemical Communications, 38, 507.
https://doi.org/10.1002/chin.200721117

[28] Shen, H., Yang, K.-F., Shi, Z.-H., Jiang, J.-X., Lai, G.-Q. and Xu, L.-W. (2011) Recyclable Tertiary Amine Modified Diarylprolinol Ether as Aminocatalyst for the Sequential Asymmetric Synthesis of Functionalized Cyclohexanes and Chromenes. European Journal of Organic Chemistry, 2011, 5031-5038.
https://doi.org/10.1002/ejoc.201100613

[29] Zhao, H.-W., Yang, Z., Yue, Y.-Y., Li, H.-L., Song, X.-Q., Sheng, Z.-H., Meng, W. and Guo, X.-Y. (2014) Asymmetric Direct Michael Reactions of Cyclohexanone with Aromatic Nitroolefins in Water Catalyzed by Novel Axially Unfixed Biaryl-Based Bifunctional Organocatalysts. Synlett, 25, 293-297.
https://doi.org/10.1055/s-0033-1340289

[30] Feng, Y.-H., Luo, R.-S., Nie, L., Weng, J. and Lu, G. (2014) Chiral Diphenylperhydroindolinol Silyl Ether Catalyzed Domino Oxa-Michael-Aldol Condensations for the Asymmetric Synthesis of Benzopyrans. Tetrahedron: Asymmetry, 25, 523.

[31] Liu, K. and Jiang, X. (2015) Regioselective and Enantioselective Domino Aldol-Oxa-Michael Reactions to Construct Quaternary (Chroman) Stereocenters. European Journal of Organic Chemistry, 2015, 6423-6428.
https://doi.org/10.1002/ejoc.201501065

[32] Xia, A.-B., Wu, C., Wang, T., Zhang, Y.-P., Du, X.-H., Zhong, A.-G., Xu, D.-Q. and Xu, Z.-Y. (2014) Enantioselective Cascade Oxa-Michael-Michael Reactions of 2-Hydroxynitrostyrenes with Enones Using a Prolinol Thioether Catalyst. Advanced Synthesis & Catalysis, 356, 1753-1760.
https://doi.org/10.1002/adsc.201301114

[33] Ramachary, D.B., Reddy, P.S. and Prasad, M.S. (2014) Neighboring Ortho-Hydroxy Group Directed Catalytic Asymmetric Triple Domino Reactions of Acetaldehyde with (E)-2-(2-Nitrovinyl)phenols. European Journal of Organic Chemistry, 2014, 3076-3081.
https://doi.org/10.1002/ejoc.201402182

[34] Zheng, B., Hou, W. and Peng, Y. (2014) Asymmetric Oxa-Michael-Aza-Henry Cascade Reaction of 2-Hydroxyaryl- Substituted α-Amido Sulfones and Nitroolefins Mediated by Chiral Squaramides. ChemCatChem, 6, 2527-2530.
https://doi.org/10.1002/cctc.201402236

[35] Poulsen, P.H., Feu, K.S., Paz, B.M., Jensen, F. and Jørgensen, K.A. (2015) Organocatalytic Asymmetric 1,6-Addi- tion/1,4-Addition Sequence to 2,4-Dienals for the Synthesis of Chiral Chromans. Angewandte Chemie International Edition, 54, 8203-8207.
https://doi.org/10.1002/anie.201503370

[36] Latif, Z., Hartley, T.G., Rice, M.J., Waigh, R.D. and Waterman, P.G. (1998) Novel and Insecticidal Isobutylamides from Dinosperma-Erythrococca. Journal of Natural Products, 61, 614-619.
https://doi.org/10.1021/np9705569

[37] Azuma, T., Murata, A., Kobayashi, Y., Inokuma, T. and Takemoto, Y. (2014) A Dual Arylboronic Acid-Amino- thiourea Catalytic System for the Asymmetric Intramolecular Hetero-Michael Reaction of α,β-Unsaturated Carboxylic Acids. Organic Letters, 16, 4256-4259.
https://doi.org/10.1021/ol501954r

[38] Kobayashi, Y., Kuramoto, R. and Takemoto, Y. (2015) Catalytic Asymmetric Formal Synthesis of Beraprost. Beilstein Journal of Organic Chemistry, 11, 2654-2660.
https://doi.org/10.3762/bjoc.11.285

[39] Sawadjoon, S., Kittakoop, P., Kirtikara, K., Vichai, V., Tanticharoen, M. and Thebtaranonth, Y. (2002) Atropisomeric Myristinins: Selective COX-2 Inhibitors and Antifungal Agents from Myristica cinnamomea. The Journal of Organic Chemistry, 67, 5470-5475.
https://doi.org/10.1021/jo020045d

[40] Maloney, D.J., Deng, J.-Z., Starck, S.R., Gao, Z. and Hecht, S.M. (2005) (+)-Myristinin A, a Naturally Occurring DNA Polymerase Beta Inhibitor and Potent DNA-Damaging Agent. Journal of the American Chemical Society, 127, 4140- 4141.
https://doi.org/10.1021/ja042727j

[41] Zhao, K., Zhi, Y., Shu, T., Valkonen, A., Rissanen, K. and Enders, D. (2016) Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds. Angewandte Chemie International Edition, 55, 12104-12108.
https://doi.org/10.1002/anie.201606947

[42] Wright, J.L., Gregory, T.F., Heffner, T.G., MacKenzie, R.G., Pugsley, T.A., Meulen, S.V. and Wise, L.D. (1997) Discovery of Selective Dopamine D4 Receptor Antagonists-1-Aryloxy-3-(4-Aryloxypiperidinyl)-2-Propanols. Bioorganic & Medicinal Chemistry Letters, 7, 1377-1380.
https://doi.org/10.1016/S0960-894X(97)00233-3

[43] Ready, J.M. and Jacobsen, E.N. (1999) Asymmetric Catalytic Synthesis of α-Aryloxy Alcohols: Kinetic Resolution of Terminal Epoxides via Highly Enantioselective Ring-Opening with Phenols. Journal of the American Chemical Society, 121, 6086-6087.
https://doi.org/10.1016/S0960-894X(97)00233-3

[44] Snyder, S.E. (1995) Synthesis and Evaluation of 6,7-Dihydroxy-2,3,4,8,9,13b-hexahydro-1H-benzo[6,7]cyclohepta [1,2,3-ef][3]benzazepine,6,7-dihydroxy-1,2,3,4,8,12b-hexahydroanthr[10,4a,4-cd]azepine, and 10-(aminomethyl)- 9,10-dihydro-1,2-Dihydroxyanthracene as Conformationally Restricted Analogs of Beta-Phenyldopamine. Journal of Medicinal Chemistry, 38, 2395-2409.
https://doi.org/10.1021/jm00013a015

[45] Kamal, A. and Gayatri, L. (1996) An Efficient Method for 4β-Anilino-4’-Demethylepipodophyllotoxins: Synthesis of NPF and W-68. Tetrahedron Letters, 37, 3359.

[46] Kim, K., Guo, Y. and Sulikowski, G.A. (1995) Synthetic Studies of the Angucycline Antibiotics. Stereocontrolled Assembly of the SF 2315B Ring System. The Journal of Organic Chemistry, 60, 6866-6871.
https://doi.org/10.1021/jo00126a043

[47] Perrone, R. (1995) High Affinity and Selectivity on 5-HT1A Receptor of 1-Aryl-4-[(1-tetralin)alkyl]piperazines. Journal of Medicinal Chemistry, 38, 942-949.
https://doi.org/10.1021/jm00006a013

[48] Lautens, M., Fagnou, K. and Taylor, M. (2000) Regioselective Palladium-Catalyzed Arylation of 2-Furaldehyde. Organic Letters, 2, 1677-1680.
https://doi.org/10.1021/ol005729r

[49] Lautens, M., Fagnou, K. and Yang, D. (2003) Rhodium-Catalyzed Asymmetric Ring Opening Reactions of Oxabicyclic Alkenes: Application of Halide Effects in the Development of a General Process. Journal of the American Chemical Society, 125, 14884-14892.
https://doi.org/10.1021/ja034845x

[50] Fang, S., Liang, X., Long, Y., Li, X., Yang, D., Wang, S. and Li, C. (2012) Iridium-Catalyzed Asymmetric Ring- Opening of Azabicyclic Alkenes with Phenols. Organometallics, 31, 3113-3118.
https://doi.org/10.1021/om3000295

[51] Cheng, H. and Yang, D. (2012) Iridium-Catalyzed Asymmetric Ring-Opening of Oxabenzonorbornadienes with Phenols. The Journal of Organic Chemistry, 77, 9756-9765.
https://doi.org/10.1021/jo3018507

[52] Li, S., Chen, H., Yang, Q., Yu, L., Fan, C., Zhou, Y., Wang, J. and Fan, B. (2013) Iridium/NMDPP Catalyzed Asymmetric Ring-Opening Reaction of Oxabenzonorbornadienes with Phenolic or Naphtholic Nucleophiles. Asian Journal of Organic Chemistry, 2, 494-497.
https://doi.org/10.1002/ajoc.201300077

[53] Meng, L., Yang, W., Pan, X., Tao, M., Cheng, G., Wang, S., Zeng, H., Long, Y. and Yang, D. (2015) Platinum-Cata- lyzed Asymmetric Ring-Opening Reactions of Oxabenzonorbornadienes with Phenols. The Journal of Organic Chemistry, 80, 2503-2512.
https://doi.org/10.1021/acs.joc.5b00065

[54] Li, S., Xu, J., Fan, B., Lu, Z., Zeng, C., Bian, Z., Zhou, Y. and Wang, J. (2015) Palladium/Zinc Co-Catalyzed Syn- Stereoselectively Asymmetric Ring-Opening Reaction of Oxabenzonorbornadienes with Phenols. Chemistry: A European Journal, 21, 9003-9007.
https://doi.org/10.1002/chem.201500816

[55] Uozumi, Y., Kato, K. and Hayashi, T. (1997) Catalytic Asymmetric Wacker-Type Cyclization. Journal of the American Chemical Society, 119, 5063-5064.
https://doi.org/10.1021/ja9701366

[56] Ishibashi, H., Ishihara, K. and Yamamoto, H. (2004) A New Artificial Cyclase for Polyprenoids: Enantioselective Total Synthesis of (−)-Chromazonarol, (+)-8-epi-Puupehedione, and (−)-11’-Deoxytaondiol Methyl Ether. Journal of the American Chemical Society, 126, 11122-11123.
https://doi.org/10.1021/ja0472026

[57] Chen, C., Zhu, S.-F., Liu, B., Wang, L.-X. and Zhou, Q.-L. (2007) Highly Enantioselective Insertion of Carbenoids into O-H Bonds of Phenols: An Efficient Approach to Chiral α-Aryloxycarboxylic Esters. Journal of the American Chemical Society, 129, 12616-12617.
https://doi.org/10.1021/ja074729k

[58] Xie, X.-L., Zhu, S.-F., Guo, J.-X., Cai, Y. and Zhou, Q.-L. (2014) Enantioselective Palladium-Catalyzed Insertion of α-Aryl-α-diazoacetates into the O[BOND]H Bonds of Phenols. Angewandte Chemie International Edition, 53, 2978- 2981.
https://doi.org/10.1002/anie.201309820

[59] Graham, T.J.A. and Doyle, A.G. (2012) Nickel-Catalyzed Cross-Coupling of Chromene Acetals and Boronic Acids. Organic Letters, 14, 1616-1619.
https://doi.org/10.1021/ol300364s

[60] Jiang, L., Jia, T., Wang, M., Liao, J. and Cao, P. (2015) Pd-Catalyzed Enantioselective Hydroalkoxylation of Alkoxyallenes with Phenol for Construction of Acyclic O,O-Acetals. Organic Letters, 17, 1070-1073.
https://doi.org/10.1021/acs.orglett.5b00146

[61] Race, N.J., Schwalm, C.S., Nakamuro, T. and Sigman, M.S. (2016) Palladium-Catalyzed Enantioselective Intermolecular Coupling of Phenols and Allylic Alcohols. Journal of the American Chemical Society, 138, 15881-15884.
https://doi.org/10.1021/jacs.6b11486

分享
Top