基于HHT的航空发动机液压管路系统管路故障诊断研究
Fault Diagnosis and of Aero-Engine Hydraulic Pipeline Vibration Signals Based on Hilbert Huang Transforms

作者: 李天成 , 朱 瑞 , 李晨晨 , 韩清鹏 :上海电力学院能源与机械工程学院,上海;

关键词: 航空发动机液压管路系统光纤光栅故障诊断振动希尔伯特黄转换经验模态分解法Aero-Engine Hydraulic Pipeline FBG Fault Diagnosis Vibration Hilbert-Huang Transform (HHT) Empirical Mode Decomposition (EMD)

摘要:
针对航空发动机液压管路系统在实际工作中由于振动过大产生的卡箍松脱故障,通过电磁振动台模拟宽频域液压管路基础激励环境,采用光纤光栅分步式监测系统,利用HHT方法可以对航空发动机液压管路系统振动信号中的突变信号进行有效的侦测。HHT分析方法能够反映航空发动机液压管路系统的故障振动响应的不同状态,由此进行航空发动机液压管路系统振动信号的检测具体实施步骤。最后结果表明,采用HHT方法与光纤光栅监测系统能够实现航空发动机液压管路故障的定位和判定。

Abstract: The objective in this paper is to present HHT method and FBG technology to analyze the aero-engine hydraulic pipeline vibration signal under fault states. Fault diagnosis and location of aero-engine hydraulic pipeline vibration signals based on HHT method and FBG method are ap-plied through HYPERLINK electromagnetic vibration table simulating wide frequency band under clamp loosing and trip state. The results tested in aero-engine hydraulic pipe show that HHT method can clearly reflect the real vibration characteristics of hydraulic pipe under different states. This method overcomes the disadvantage of the traditional Fourier transform (FFT) which cannot obtain the instantaneous frequency of aero-engines, and provides a new idea for the non- stationary vibration information of hydraulic pipe under different states. Fault diagnosis and location of the aero-engine hydraulic pipeline are confirmed by HHT and FBG method.

文章引用: 李天成 , 朱 瑞 , 李晨晨 , 韩清鹏 (2017) 基于HHT的航空发动机液压管路系统管路故障诊断研究。 国际航空航天科学, 5, 37-44. doi: 10.12677/JAST.2017.51005

参考文献

[1] Mao, X.Y., Ding, H. and Chen, L.Q. (2016) Steady-State Response of a Fluid-Conveying Pipe with 3:1 Internal Resonance in Supercritical Regime. Nonlinear Dynamics, 86, 795-809.
https://doi.org/10.1007/s11071-016-2924-9

[2] 孙海东, 傅强. 航空发动机振动监测研究[J]. 机械设计与制造, 2007(2): 127-129.

[3] Bab, S., et al. (2016) Dynamic Stability and Nonlinear Vibration Analysis of a Rotor System with Flexible/Rigid Blades. Mechanism and Machine Theory, 105, 633-653.

[4] Feng, Z.P., Liang, M. and Chu, F.L. (2013) Recent Advances in Time-Frequency Analysis Methods for Machinery Fault Diagnosis: A Review with Application Examples. Mechanical Systems and Signal Processing, 38, 165-205.

[5] Lei, Y.G., Lin, J., He, Z.J. and Zuo, M.J. (2013) A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery. Mechanical Systems and Signal Processing, 35, 108-126.

[6] Yan, J.H. and Lu. L. (2014) Improved Hilbert-Huang Transform Based Weak Signal Detection Methodology and Its Application on Incipient Fault Diagnosis and ECG Signal Analysis. Signal Processing, 98, 74-87.

[7] Zoukaneri, I. and Porsani, M.J. (2015) A Combined Wigner-Ville and Maximum Entropy Method for High-Resolution Time-Frequency Analysis of Seismic Data. Geophysics, 80, O1-O11.
https://doi.org/10.1190/geo2014-0464.1

[8] Iatsenko, D., McClintock, P. and Stefanovska, A. (2015) Linear and Synchrosqueezed Time-Frequency Representations Revisited: Overview, Standards of Use, Resolution, Reconstruction, Concentration, and Algorithms. Digital Signal Processing, 42, 1-26.

[9] Pandya, D.H., Upadhyay, S.H. and Harsha, S.P. (2013) Fault Diagnosis of Rolling Element Bearing with Intrinsic Mode Function of Acoustic Emission Data Using APF-KNN. Expert Systems with Applications, 40, 4137-4145.

[10] Liu, L.B., et al. (2015) Applications of the Hilbert-Huang Transform for Microtremor Data Analysis Enhancement. Journal of Earth Science, 26, 799-806.
https://doi.org/10.1007/s12583-015-0594-z

分享
Top