一类具有水平和垂直传播的连续SIR传染病模型的分岔性质
Bifurcation Property of a Class Continuous SIR Model with Vertical and Horizontal Transmission

作者: 李明山 , 张渝曼 , 黄晓玉 , 李晓培 :岭南师范学院数学与统计学院,广东 湛江; 冷薇 :广州大学经济与统计学院,广东 广州;

关键词: SIR模型垂直传染中心流形跨临界分岔正规形SIR Model Vertical Transmission Center Manifold Transcritical Bifurcation Normal Form

摘要: 研究一类具有水平和垂直传播的连续SIR传染病模型分岔性质。首先我们讨论了平衡点类型与参数的关系,从而确定平衡点的双曲性和非双曲性,然后通过中心流形研究了模型在无病平衡点的跨临界分岔和正规形,最后给出了模型跨临界分岔的生物学解释。

Abstract: Bifurcation property of a class SIR model with horizontal and vertical transmission is investigated. Firstly, the type of equilibrium points is determined by discussing its coefficient parameters. Then the transcritical bifurcation and normal form of the model is explored by center manifold theorem. Finally, biological mean of the model is also given.

文章引用: 李明山 , 张渝曼 , 黄晓玉 , 冷薇 , 李晓培 (2017) 一类具有水平和垂直传播的连续SIR传染病模型的分岔性质。 应用数学进展, 6, 218-224. doi: 10.12677/AAM.2017.62025

参考文献

[1] Kermack, W.O. and McKendrick, A.G. (1927) Contributions to the Mathematical Theory of Epidemics. Proceedings of the Royal Society, 115, 700-721.

[2] 陈兰荪. 数学生态学模型与研究方法[M]. 北京: 科学出版社, 1988.

[3] 马知恩, 周义仓, 王稳地, 靳祯. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004.

[4] Allen, L.J.S. (1994) Some Discrete-Time SI, SIR and SIS Epidemic Models. Mathematical Biosciences, 124, 83-105.
https://doi.org/10.1016/0025-5564(94)90025-6

[5] Andersonand, R.M. and May, R.M. (1991) Infections Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.

[6] Diekmann, O. and Heersterbeek, J.A.P. (2000) Mathematical Epidemiology of Infectious Diseases. Wiley, New York.

[7] Robinson, R.C. (2004) An Introduction to Dynamical Systems: Continuous and Discrete. Pearson Prentice Hall, Upper Saddle River.

[8] Anderson, R. and May, R. (1979) Population Biology of Infectious Diseases, Part I. Nature, 280, 361-367.

[9] Anderson, R. and May, R. (1995) Infections Disease of Humans, Dynamics and Control. Oxford University Press, Oxford.

[10] Meng, X. and Chen, L. (2008) The Dynamics of a New SIR Epidemic Model Concerning Pulse Vaccination Strategy. Applied Mathematics and Computation, 197, 582-597.
https://doi.org/10.1016/j.amc.2007.07.083

[11] Zhou, X., Li, X. and Wang, W. (2014) Bifurcations for a Deterministic SIR Epidemic Model in Discrete Time. Advances in Difference Equations, 2014, 168.

[12] Liao, X., Wang, H., Huang, X., Zeng, W. and Zhou, X. (2015) The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete Time. Applied Mathematics, 6, 1665-1675.
https://doi.org/10.4236/am.2015.610148

[13] Li, M.S., Liu, X.M. and Zhou, X. (2016) The Dynamic Behavior of a Discrete Vertical and Horizontal Transmitted Disease Model under Constant Vaccination. International Journal of Modern Nonlinear Theory and Application, 5, 171-184.

[14] 杨建雅, 张凤琴. 一类具有垂直传染的SIR传染病模型[J]. 生物数学学报, 2006, 21(3): 341-344.

[15] 李明山, 刘秀敏, 周效良. 一类离散传染病模型的动力学分析[J]. 广东海洋大学学报, 2017, 37(1): 1-7.

[16] 商宁宁, 王辉, 胡志兴, 等. 一类具有饱和发生率和饱和治愈率的SIR传染病模型的分支分析[J]. 昆明理工大学学报(自然科学版), 2015, 40(3): 139-148.

[17] Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York.

[18] Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York.
https://doi.org/10.1007/978-1-4757-4067-7

[19] Kuznetsov, Y. (2004) Elements of Applied Bifurcation Theory. Springer, New York.
https://doi.org/10.1007/978-1-4757-3978-7

分享
Top