一类具有季节效应的脉冲控制生物系统动力学研究
Dynamic Analysis of an Impulsive Controlled Biological System with Seasonal Effect

作者: 刘贺 :温州大学,浙江 温州;

关键词: 季节效应Floquet定理半平凡周期解持久生存稳定性Seasonal Effect Floquet Theory Semi-Trivial Periodic Solution Permanence Stability

摘要: 基于生态学理论与数学生物学知识,在动态建模过程中加入了Hassell-Varley功能反应函数,建立了一类具有季节效应的脉冲控制生物动力系统。借助脉冲微分方程的Floquet定理与比较定理,分析了系统半平凡周期解的存在性、局部渐近稳定性和全局渐近稳定性,同时讨论了系统生物种群的灭绝性与持久生存性。这些研究结果为进一步研究如何运用脉冲控制策略维持生态种群持久生存提供了一定的理论支撑。

Abstract: In this paper, firstly, on the basis of ecology theory and mathematical biology knowledge, an impulsive controlled biological dynamical system with seasonal effect has been established by introducing Hassell-Varley functional response in the process of dynamic modeling. Secondly, using the Floquet theory and comparison theorem of impulsive differential equations, the existence, local asymptotic stability and global asymptotic stability of the semi-trivial periodic solution have been analyzed, and then the extinction and permanence of biological populations in the system have also been discussed. Finally, all those results can provide some theoretical support for further researching how to utilize control strategy to maintain the survival of ecological populations.

文章引用: 刘贺 (2017) 一类具有季节效应的脉冲控制生物系统动力学研究。 应用数学进展, 6, 188-201. doi: 10.12677/AAM.2017.62022

参考文献

[1] Berryman, A.A. (1992) The Origins and Evolution of Predator-Prey Theory. Ecology, 5, 1530-1535.
https://doi.org/10.2307/1940005

[2] May, R.M. (2001) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.

[3] Murray, J.D. (2003) Mathematical Biology II: Spatial Models and Biomedical Applications. 3rd Edition, Springer, New York.

[4] Arditi, R. and Ginzburg, L.R. (1989) Coupling in Predator-Prey Dynamics: Ratio-Dependence. Journal of Theoretical Biology, 139, 311-326.
https://doi.org/10.1016/S0022-5193(89)80211-5

[5] Collings, J.B. (1997) The Effects of the Functional Response on the Bifurcation Behavior of a Mite Predator-Prey Interaction System. Journal of Mathematical Biology, 36, 149-168.
https://doi.org/10.1007/s002850050095

[6] Ruan, S. and Xiao, D. (2001) Global Analysis in a Predator-Prey System with Non-Monotonic Functional Response. SIAM Journal on Applied Mathematics, 61, 1445-1472.
https://doi.org/10.1137/S0036139999361896

[7] Skalski, G.T. and Gilliam, J.F. (2001) Functional Responses with Predator Interference: Viable Alternatives to the Holling Type II Mode. Ecology, 82, 3083-3092.
https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

[8] Hassell, M.P. and Varley, G.C. (1969) New Inductive Population Model for Insect Parasites and Its Bearing on Biological Control. Nature, 5211, 1133-1137.
https://doi.org/10.1038/2231133a0

[9] Cosner, C., Deangelis, D.L., Ault, J.S. and Olson, D.B. (1999) Effects of Spatial Grouping on the Functional Response of Predators. Theoretical Population Biology, 1, 65-75.
https://doi.org/10.1006/tpbi.1999.1414

[10] Abrams, P.A. and Ginzburg, L.R. (2008) The Nature of Predation: Prey Dependent, Ratio Dependent or Neither. Trends in Ecology and Evolution, 8, 337-341.

[11] Sutherland, W.J. (1983) Aggregation and the “Ideal Free” Distribution. The Journal of Animal Ecology, 3, 821-828.
https://doi.org/10.2307/4456

[12] Gakkhar, S. and Naji, R.K. (2003) Chaos in Seasonally Perturbed Ratio-Dependent Prey-Predator System. Chaos, Solitons & Fractals, 1, 107-118.
https://doi.org/10.1016/S0960-0779(02)00114-5

[13] Sabin, G.C.W. and Summers, D. (1993) Chaos in a Periodically Forced Predator-Prey Ecosystem Model. Mathematical Biosciences, 1, 91-113.
https://doi.org/10.1016/0025-5564(93)90010-8

[14] Upadhyay, R.K. and Lyengar, S.P.K. (2005) Effect of Seasonality on the Dynamics of 2 and 3 Species Prey-Predator System. Nonlinear Analysis: Real World Applications, 6, 509-530.
https://doi.org/10.1016/j.nonrwa.2004.11.001

[15] Ackland, G.J. and Gallagher, I.D. (2004) Stabilization of Large Generalized Lotka-Volterra Food Webs by Evolutionary Feedback. Physical Review Letters, 93, Article ID: 158701.

[16] Jiang, G. and Lu, Q. (2006) The Dynamics of a Prey-Predator Model with Impulsive State Feedback Control. Discrete and Continuous Dynamical Systems. Series B, 6, 1301-1320.
https://doi.org/10.3934/dcdsb.2006.6.1301

[17] Liu, X. and Chen, L. (2003) Complex Dynamics of Holling Type II Lotka-Volterra Predator-Prey System with Impulsive Perturbations on the Predator. Chaos, Solitons & Fractals, 2, 311-320.
https://doi.org/10.1016/S0960-0779(02)00408-3

[18] Liu, B., Zhang, Y. and Chen, L. (2005) Dynamic Complexities in a Lotka-Volterra Predator-Prey Model Concerning Impulsive Control Strategy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2, 517-531.
https://doi.org/10.1142/S0218127405012338

[19] Samoilenko, A.M. and Perestyuk, N.A. (1995) Impulsive Differential Equations, World Scientific, Singapore.
https://doi.org/10.1142/2892

[20] Zavalishchin, S.T. and Sesekin, A.N. (1997) Dynamic Impulse Systems Theory and Applications. Mathematics and Its Applications. Kluwer, Dordrecht, 394.

[21] Lakshmikantham, V. and Liu, X. (1989) On Quasi-Stability for Impulsive Differential Systems. Nonlinear Analysis: Theory, Methods & Applications, 13, 819-828.
https://doi.org/10.1016/0362-546X(89)90074-6

[22] Liu, X. and Rolf, K. (1998) Impulsive Control of a Lotka-Volterra System. IMA Journal of Mathematical Control and Information, 15, 269-284.
https://doi.org/10.1093/imamci/15.3.269

[23] Akhmet, M.U. (2003) On the General Problem of Stability for Impulsive Differential Equations. Journal of Mathematical Analysis and Applications, 288, 182-196.
https://doi.org/10.1016/j.jmaa.2003.08.001

[24] Liu, X. and Chen, L. (2004) Global Dynamics of the Periodic Logistic System with Periodic Impulsive Perturbations. Journal of Mathematical Analysis and Applications, 289, 279-291.
https://doi.org/10.1016/j.jmaa.2003.09.058

[25] Negi, K. and Gakkhar, S. (2007) Dynamics in a Beddington-DeAngelis Prey-Predator System with Impulsive Harvesting. Ecological Modelling, 206, 421-430.
https://doi.org/10.1016/j.ecolmodel.2007.04.007

[26] Lakshmikantham, V., Bainov, D.D. and Simeonov, P.C. (1989) Theory of Impulsive Differential Equations. World Scientific, Singapore.
https://doi.org/10.1142/0906

[27] Benchohra, M., Henderson, J. and Ntouyas, S. (2006) Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York.
https://doi.org/10.1155/9789775945501

[28] Zavalishchin, S.T. and Sesekin, A.N. (1997) Dynamic Impulsive Systems: Theory and Applications. Mathematics and Its Application. Kluwer Academic Publishers Group, Dordrecht.
https://doi.org/10.1007/978-94-015-8893-5

[29] Tan, Y., Tao, F. and Chen, L. (2008) Dynamics of a Non-Autonomous System with Impulsive Output. International Journal of Biomathematics, 1, 225-238.
https://doi.org/10.1142/S1793524508000187

[30] Bainov, D.D. and Simeonov, P.S. (1993) Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific and Technical, Essex.

[31] Ang, T.Y. (2001) Impulsive Control Theory. World Scientific, Singapore.

[32] Bainov, D.D. and Simeonov, P.C. (1989) System with Impulsive Effect: Stability, Theory and Applications. Ellis Horwood Limited, Chichester.

[33] Bainov, D.D. and Simeonov, P.S. (1993) Impulsive Differential Equations: Asymptotic Properties of the Solutions. World Scientific, Singapore.

分享
Top