撤稿:基于链接的关系主题模型
RETRACTED:Relation Topic Model Based on Links

作者: 王全民 , 孙艳峰 * , 李振国 , 谷 实 , 王开阳 :北京工业大学信息学部计算机学院,北京;

关键词: LDA模型RTM模型链接变分分布LDA Model RTM Model Links Variational Distribution

摘要: 撤稿声明基于链接的关系主题模型一文刊登在2017年3月出版的《计算机科学与应用》7卷3期232-239页上该文参照了2009年的一篇会议文章《Relational Topic Models For document Networks》中的框架思想,并擅自使用了大量该论文中的图片和内容,而且在原作者不知情的情况下投稿并发表了此文,这对原论文的作者造成了影响,故郑重声明撤销此稿件。根据国际出版流程,编委会现决定撤除此稿件王全民, 孙艳峰, 李振国, 谷实, 王开阳. 基于链接的关系主题模型[J]. 计算机科学与应用, 2017, 7(3):232-239.https://doi.org/10.12677/CSA.2017.73029

文章引用: 王全民 , 孙艳峰 , 李振国 , 谷 实 , 王开阳 (2017) 撤稿:基于链接的关系主题模型。 计算机科学与应用, 7, 232-239. doi: 10.12677/CSA.2017.73029

参考文献

[1] 李文波, 孙乐, 黄瑞红. 基于Labeled-LDA模型的文本分类新算法[J]. 计算机学报, 2008, 31(4): 620-627.

[2] 张启蕊, 张凌, 董守斌, 谭景华. 训练集类别分布对文本分类的影响[J]. 清华大学学报(自然科学版), 2005, 45(S1): 76-79.

[3] Blei, D., Ng, A. and Jordan, M. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993- 1022.

[4] Cohn, D. and Hofmann, T. (2011) The Missing Link—A Probabilistic Model of Document Content and Hypertext Connectivity. Neural Information Processing Systems.

[5] Newman, M. (2012) The Structure and Function of Networks. Computer Physics Communications, 147, 40-45.

[6] Taskar, B., Wong, M., Abbeel, P. and Koller, D. (2014) Link Prediction in Relational Data. Neural Information Processing Systems.

[7] McCallum, A., Nigam, K., Rennie, J. and Seymore, K. (2009) Automating the Construction of Internet Portals with Machine Learning. Information Retrieval, 3, 127-163.
https://doi.org/10.1023/A:1009953814988

[8] McCallum, A., Corrada-Emmanuel, A. and Wang, X. (2010) Topic and Role Discovery in Social Networks. IJCAI.

[9] Nallapati, R., Ahmed, A., Xing, E.P. and Cohen, W.W. (2008) Joint Latent Topic Models for Text and Citations. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, 24-27 August 2008, 542-550.
https://doi.org/10.1145/1401890.1401957

[10] Nallapati, R. and Cohen, W. (2013) Link-pLSA-LDA: A New Unsupervised Model for Topics and Influence of Blogs. 2nd International Conference on Weblogs and Social Media (ICWSM), Seattle, 2008.

[11] Mei, Q., Cai, D., Zhang, D. and Zhai, C. (2008) Topic Modeling with Network Regularization. Proceedings of the 17th international conference on World Wide Web, Beijing, 21-25 April 2008, 101-110.
https://doi.org/10.1145/1367497.1367512

[12] Airoldi, E., Blei, D., Fienberg, S. and Xing, E. (2008) Mixed Membership Stochastic Blockmodels. Journal of Machine Learning Research, 9, 1981-2014.

[13] Blei, D. and Jordan, M. (2013) Modeling Annotated Data. Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, 28 July-1 August 2003, 127-134.

[14] Blei, D.M. and McAuliffe, J.D. (2007) Supervised Topic Models. Neural Information Processing Systems.

[15] Braun, M. and McAuliffe, J. (2010) Variational Inference for Large-Scale Models of Discrete Choice. Journal of the American Statistical Association, 105, 324-334. arXiv:0712.2526.
https://doi.org/10.1198/jasa.2009.tm08030

[16] Sinkkonen, J., Aukia, J. and Kaski, S. (2008) Component Models for Large Networks. arXiv:0803.1628

[17] Gruber, A., Rosen-Zvi, M. and Weiss, Y. (2008) Latent Topic Models for Hypertext. Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence.

[18] Hoff, P., Raftery, A. and Handcock, M. (2012) Latent Space Approaches to Social Network Analysis. Journal of the American Statistical Association, 97, 1090-1098.
https://doi.org/10.1198/016214502388618906

[19] Getoor, L., Friedman, N., Koller, D. and Taskar, B. (2011) Learning Probabilistic Models of Relational Structure. Proceedings of the 18th International Conference on Machine Learning, 28 June-1 July 2001, 170-177.

[20] Wang, X., Mohanty, N. and McCallum, A. (2005) Group and Topic Discovery from Relations and Text. Proceedings of the 3rd International Workshop on Link Discovery, Chicago, 21-25 August 2005, 28-35.
https://doi.org/10.1145/1134271.1134276

[21] Hofman, J. and Wiggins, C. (2008) Bayesian Approach to Network Modularity. Physical Review Letters, 100, Article ID: 258701. arXiv:0709.3512.
https://doi.org/10.1103/physrevlett.100.258701

[22] Dietz, L., Bickel, S. and Scheffer, T. (2007) Unsupervised Prediction of Citation Influences. Proceedings of the 24th International Conference on Machine Learning, Corvalis, Oregon, 20-24 June 2007, 233-240.
https://doi.org/10.1145/1273496.1273526

[23] Kemp, C., Griffiths, T. and Tenenbaum, J. (2014) Discovering Latent Classes in Relational Data. MIT AI Memo 2004- 019.

分享
Top