基于XCS和LS-SVM的ALV在狭隘环境中的避碰规划
Research on Obstacle Avoidance Planning for ALV Based on XCS in Narrow Environments

作者: 邵杰 :郑州科技学院信息工程学院,河南 郑州;南京理工大学计算机学院,江苏 南京; 王清珍 :郑州科技学院信息工程学院,河南 郑州;

关键词: 避碰规划最小二乘支持向量机自主地面车学习分类器遗传算法Obstacle Avoidance Planning LS-SVM Autonomous Land Vehicle (ALV) Accuracy-Based Learning Classifier System (XCS) Genetic Algorithm

摘要:
动态环境下的局部避碰是自主地面车的一项基本功能,在自主导航中占有重要作用。由于遗传算法具有早熟收敛、局部最优解和占据较大的存储空间等缺陷,为了提高自主地面车的避碰能力,本文提出了一种基于学习分类器的自主地面车在狭隘环境中路径避碰规划方法,设计改进了特殊的遗传算子。不同环境的仿真实验结果表明LS-SVM和学习分类器结合用于自主地面车的路径规划是收敛的,提高了ALV在狭隘环境中快速发现安全路径的能力。

Abstract: Local obstacle avoidance in dynamic narrow environments, as a principal ability for ALV, plays an important role in autonomous navigation. Due to premature convergence, local optimal solution, accounting for a larger storage space and other shortcomings of genetic algorithms still exist. In order to improve the ability of obstacle avoidance for ALV, this paper presents a path obstacle avoidance planning method based on LCS for ALV in narrow environments, designs and improves special Genetic Operators. Different environments of simulation results showed that the combination of LS-SVM and learning classifier for ALV path obstacle avoidance planning was convergent, increasing ALV’s ability to quickly find safe paths in narrow environments.

文章引用: 邵杰 , 王清珍 (2017) 基于XCS和LS-SVM的ALV在狭隘环境中的避碰规划。 人工智能与机器人研究, 6, 22-30. doi: 10.12677/AIRR.2017.61004

参考文献

[1] Jie, S. and Yang, J.Y. (2010) Multi-Robot Reinforcement Learning Based on Learning Classifier System with Gradient Descent Methods. Journal of Computational Information Systems, 6, 2449-2455.

[2] 朱大奇, 颜明重. 移动机器人路径规划技术综述[J]. 控制与决策, 2010, 25(7): 961-967.

[3] 邵杰, 杨静宇, 等. 基于学习分类器的多机器人路径规划收敛性研究[J]. 计算机研究与发展, 2010, 47(5): 948- 955.

[4] 焦殿科, 石川. 共享经验的多主体强化学习研究[J]. 计算机工程, 2008, 34(11): 219-221.

[5] 尚艳玲, 肖文雅. 多Agent系统的Q值强化学习算法[J]. 河南师范大学学报(自然科学版), 2013, 41(2): 158-160.

[6] 杨献峰, 付俊辉. 移动机器人路径规划的仿真研究[J]. 计算机仿真, 2012, 29(7): 223-226.

[7] Musilek, P. (2005) Enhanced Learning Classifier System for Robot Navigation. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2-6 August 2005, 3390-3395. https://doi.org/10.1109/iros.2005.1545150

[8] 邵杰, 杜丽娟, 等. XCSG在多机器人强化学习中的应用[J]. 计算机科学, 2013, 8(2): 249-252.

[9] Bernad´o-Mansilla, E. and Garrell, J. (2003) Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks. Evolutionary Computation, 11, 209-238. https://doi.org/10.1162/106365603322365289

[10] 王雪松, 田西兰, 程玉虎, 易建强. 基于协同最小二乘支持向量机的Q学习[J]. 自动化学报, 2009, 35(2): 214- 219.

分享
Top