青藏高原菊科特有属绢毛菊属核型的补充报道
A Supplementary of Chromosomal Studies on an Endemic Genus Soroseris (Asteraceae: Lactuceae) from the Qinghai-Tibet Plateau

作者: 杨慧娴 , 苏富明 , 任艳 , 张永洪 , 李志敏 :云南师范大学生命科学学院,云南 昆明; 孙文光 :云南师范大学生命科学学院,云南 昆明;中国科学院昆明植物研究所,东亚植物多样性与生物地理学重点实验室,云南 昆明;

关键词: 青藏高原染色体数目绢毛菊属核型Qinghai-Tibet Plateau Chromosome Number Soroseris Karyotype Analysis

摘要: 菊科(Asteraceae)绢毛菊属(Soroseris)是青藏高原地区的特有类群,本文对采自青藏高原及其邻近地区的6种绢毛菊属植物的种子进行核型研究。利用常规压片法通过实验可以确定:绢毛菊属植物染色体基数都为8,除皱叶绢毛菊(S.hookeriana)为四倍体外其余5种都为二倍体,结果如下:金沙绢毛菊(S. gillii):2n = 2x = 16 = 14 m + 2 sm。;绢毛菊(S. glomerata) 2n = 2x = 16 = 14 m + 2 sm;空桶参(S. erysimoides) 2n = 2x = 16 = 14 m + 2 sm;肉菊(S. umbrella):2n = 2x = 16 = 16 m;羽裂绢毛菊(S. hirsuta):2n = 2x = 16 = 14 m + 2 sm;皱叶绢毛菊(S.hookeriana):2n = 4x = 32 = 32 m。核型分析结果表明,除绢毛菊(S. glomerata)和皱叶绢毛菊(S.hookeriana)为1A型外其余都为2A型。以上结果表明,绢毛菊属植染色体基数非常一致(x = 8),该属植物物种分化的主要途径可能是二倍体水平的染色体结构变异及多倍化。

Abstract: The genus Soroseris is a small genus of Asteraceae distributing primarily in the Qinghai-Tibet Pla-teau and adjacent regions. In this study, we report the chromosome numbers and karyotypes of 6 species originally assigned to Soroseris. By using the plant root tip cytology research method, the results showed that the chromosome base number is x = 8; the karyotype formulas respectively was: S. gillii with 2n = 2x = 16 = 14 m + 2 sm; S. glomerata with 2n = 2x = 16 = 14 m + 2 sm; S. erysimoides with 2n = 2x = 16 = 14 m + 2 sm; S. umbrella with 2n = 2x = 16 = 16 m; S. hirsute with 2n = 2x = 16 = 14 m + 2 sm; S.hookeriana with 2n = 4x = 32 = 32 m; Karyotypes of all the species ex-amined are relatively asymmetrical, and are classified as Stebbins’ types 1A and 2A. These findings suggest that all of the chromosome base number of Soroseris were x = 8, the variation of chromosome’s structure and polyploidization events played a major role in species diversification in this alpine genus.

文章引用: 杨慧娴 , 苏富明 , 任艳 , 孙文光 , 张永洪 , 李志敏 (2017) 青藏高原菊科特有属绢毛菊属核型的补充报道。 植物学研究, 6, 17-24. doi: 10.12677/BR.2017.61004

参考文献

[1] Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al. (2000) Biodiversity Hotspots for Conservation Priorities. Nature, 403, 853-858.
https://doi.org/10.1038/35002501

[2] Olson, D.M. and Dinerstein, E. (2002) The Global 200: Priority Ecoregions for Global Conservation. Annals of the Missouri Botanical Garden, 89, 199-224.
https://doi.org/10.2307/3298564

[3] Polunin, O. and Stainton, A. (1984) Flowers of the Himalaya. Oxford University Press, Oxford.

[4] Wu, Z.Y. (1988) Hengduan Mountain Flora and Her Significance. Journal of Japanese Botany, 63, 297-311.

[5] 李锡文, 李捷. 横断山脉地区种子植物区系的初步研究[J]. 云南植物研究, 1993, 15(3): 217-231.

[6] 武素功, 杨永平, 费勇. 青藏高原高寒地区种子植物区系的研究[J]. 云南植物研究, 1995, 17(3): 233-250.

[7] 孙航. 北极–第三纪成分在喜马拉雅–横断山的发展及演化[J]. 云南植物研究, 2002a, 24(6): 671-688.

[8] 石铸. 菊科[A]. 中国植物志(第80卷第1册) [M]. 北京: 科学出版社, 1997: 194-202.

[9] Shi, Z., Chen, Y.L., Chen, Y.S., et al. (2011) Asteraceae (Compositae). In: Wu Z.Y., Hong D.Y. and Raven P.H., Eds., Flora of China. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, 20-21, 342-536.

[10] 孙航. 古地中海退却与喜马拉雅–横断山的隆起在中国喜马拉雅成分及高山植物区系的形成与发展上的意义[J]. 云南植物研究, 2002, 24(3): 273-288.

[11] 洪德元. 植物细胞分类学[M]. 北京: 科学出版社, 1990.

[12] Kikuchi, S., Tanaka, H., Shiba, T., Mii, M. and Tsujimoto, H. (2006) Genome Size, Karyo-type, Meiosis and a Novel Extra Chromosome in Torenia fournieri, T. baillonii and Their Hybrid. Chromosome Research, 14, 665-672.
https://doi.org/10.1007/s10577-006-1077-y

[13] Liu, J.Q. (2004) Uniformity of Karyotypes in Ligularia (Asteraceae: Senecio-neae), a Highly Diversified Genus of the Eastern Qinghai-Tibet Plateau Highlands and Adjacent Areas. Botanical Journal of the Linnean Society, 144, 329-342.
https://doi.org/10.1111/j.1095-8339.2003.00225.x

[14] Whittaker, R.J., Triantis, K.A. and Ladle, R.J. (2008) A General Dynamic Theory of Oceanic Island Biogeography. Journal of Biogeography, 35, 977-994.
https://doi.org/10.1111/j.1365-2699.2008.01892.x

[15] 聂泽龙, 孙航, 顾志建. 横断山区被子植物染色体研究概况[J]. 云南植物研究, 2004, 26(1): 35-57.

[16] Nie, Z.L., Wen, J., Gu, Z.J., Boufford, D.E. and Sun, H. (2005) Polyploidy in the Flora of the Hengduan Mountains Hotspot, Southwestern China. Annals of the Missouri Botanical Garden, 92, 275-306.

[17] Levan, A., Fredga, K. and Sandberg, A.A. (1964) Nomenclature for Centromeric Position on Chromosomes. Hereditas, 52, 201-220.
https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

[18] Stebbins, G.L. (1940) Studies in the Cichorieae: Dubyaea and Soroseris, Endemics of the Sino-Himalayan Region. Memoirs of the Torrey Botanical Club, 19, 1-76.

[19] 李懋, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 植物科学学报, 1985, 3(4): 297-302.

[20] Arano, H. (1963) Cytological Studies in Subfamily Carduoideae (Compositae) of Japan IX. Botanical Magazine, 76, 32-39.
https://doi.org/10.15281/jplantres1887.76.32

[21] Paszko, B. (2006) A Critical Review and a New Proposal of Karyotype Asymmetry Indices. Plant Systematics and Evolution, 258, 39-48.
https://doi.org/10.1007/s00606-005-0389-2

[22] Tanaka, R. (1971) Types of Resting Nuclei in Orchidaceae. Botanical Magazine, 84, 118-122.
https://doi.org/10.15281/jplantres1887.84.118

[23] Zhang, J.W., Sun, H. and Nie, Z.L. (2007) Karyological Studies on the Si-no-Himalayan Endemic Soroseris and Two Related Genera of Tribe Lactuceae (Asteraceae). Botanical Journal of the Linnean Society, 154, 79-87.
https://doi.org/10.1111/j.1095-8339.2007.00644.x

[24] Sun, W.G., Zhang, Y.Z., Peng, D.L., et al. (2016) Karyotype of Nine Endemic Species from alpine Subnival Belt in the Hengduan Mountains, SW China. Journal of Japanese Botany, 91, 242-249.

[25] Jones, K. (1970) Chromosome Changes in Plant Evolution. Taxon, 19, 172-179.
https://doi.org/10.2307/1217950

[26] Stebbins, G.L. (1971) Chromosomal Evolution in Higher Plants. Addison Wesley, New York.

[27] Jian, H.Y., Zhang, H., Tang, K.X., et al. (2010) Decaploidy in Rosa praelucens Byhouwer (Rosaceae) Endemic to Zhongdian Plateau, Yunnan, China. Caryologia, 63, 162-167.
https://doi.org/10.1080/00087114.2010.10589722

分享
Top