张量投票在流可视化中的应用
Application of Tensor Voting in Flow Visualization

作者: 邵晓芳 , 初晓军 :海军航空工程学院青岛校区,山东 青岛;

关键词: 流场流可视化流线Flow Field Flow Visualization Streamline

摘要:
流可视化作为科学计算可视化领域的一个经典方向是一项展示液体/气体等流体的动态行为的矢量可视化技术,是流体力学研究的一项重要工具,并在气象分析(天气预报)、航空动力学、海洋学、工业流程分析、爆轰数据模拟、水利工程中的数字流域建设等许多领域中起到很重要的作用。该文对流可视化的相关工作进行了较为系统的介绍,并在此基础上展示了张量投票技术在流可视化中的应用。

Abstract: Flow visualization is one of the main means for fluid dynamics research and can demonstrate the dynamic behavior of fluid or gas by vector visualization. It is an important research subject in weather analysis, aeronautical dynamics, oceanography, industrial applications, etc. In this paper, we give a survey on related works on flow visualization and show how to apply tensor voting in this field.

文章引用: 邵晓芳 , 初晓军 (2017) 张量投票在流可视化中的应用。 人工智能与机器人研究, 6, 1-8. doi: 10.12677/AIRR.2017.61001

参考文献

[1] Smits, A.J. and Lim, T.T. (2012) Flow Visualization: Techniques and Examples. 2nd Edition, Imperial College Press, London. https://doi.org/10.1142/p808

[2] Van Wijk, J.J. (2002) Image Based Flow Visualization. Proceedings ACM SIGGRAPH 2002, San Antonio, 21-22 July 2002, 105-126. https://doi.org/10.1145/566570.566646

[3] 蒋健明, 周迪斌, 胡斌. 矢量可视化研究综述[J]. 科技通报, 2010, 26(4): 611-616.

[4] 梁训东. 向量场可视化技术的研究与实现[D]: [博士学位论文]. 北京: 中国科学院计算技术研究所, 1996.

[5] Liu, Z.P. Flow Visualization—Texture-Based—Texture Advection—Line Integral Convolution—LIC. http://www.zhanpingliu.org/Research/FlowVis/FlowVis.htm

[6] Liu, Z.P., Moorhead II, R.J. and Groner, J. (2006) An Advanced Evenly Spaced Streamline Placement Algorithm. IEEE Transactions on Visualization and Computer Graphics, 12, 965-972. https://doi.org/10.1109/TVCG.2006.116

[7] Samimy, M., Breuer, K.S., Leal, L.G., et al. (2004) A Gallery of Fluid Motion. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511610820

[8] Liu, Z.P. and Moorhead II, R.J. (2007) Robust Loop Detection for Interactively Placing Evenly Spaced Streamlines. IEEE Computing in Science and Engineering, 9, 86-91. https://doi.org/10.1109/MCSE.2007.82

[9] 吴晓莉. 面向空间遥感科学实验的流可视化技术研究[D]: [博士学位论文]. 北京: 国防科学技术大学研究生院, 2007.

[10] Medioni, G., Lee, M.S. and Tang, C.K. (2000) A Computational Framework for Feature Extraction and Segmentation. Elsevier Science, The Netherlands, 149-168.

分享
Top