混流式水轮机活动导叶动态绕流特性研究
Research on the Turbulent Flow around Guide Vane of Francis Turbine

作者: 王文全 , 张立翔 , 闫妍 , 郭亚昆 :;

关键词: 混流式水轮机活动导叶湍流流动大涡模拟Francis Turbine Guide Vane Turbulent Flow Large Eddy Simulation

摘要:

为探索混流式水轮机活动导叶调节时,叶后非均匀流场的分布特性,应用非定常不可压缩流体N-S控制方程和基于亚格子湍动能的大涡模拟湍流模型,数值模拟某试验模型水轮机在进口速度攻角连续改变时活动导叶动态绕流特性。计算结果表明,随着进口速度攻角的逐渐增加,导叶诱发的涡结构强度逐渐增加,同时导叶尾迹区内各流向断面压力、速度以及涡量分布的不均匀度指标也逐渐增加。计算成果对优化水轮机设计具有重要的参考价值。

To investigate the non-uniform characteristics of flow around a guide vane of Francis turbine, three-dimensional turbulent flow in full flow passage of a guide vane of a test Francis turbine model was simulated using large eddy simulation with dynamical subgrid-scale models based on turbulent kinetic energy. The dynamical characteristics about flowing distribution of the full guide vane passage at different inlet ve-locity attack angle are obtained. The numerical results show that the intense of vortices increases with the ris-ing up of the inlet velocity attack angle, simultaneously, the non-uniformity indexes about pressure, velocity and vorticity also increase. These findings are helpful to improve the design of the hydro-turbine units.

文章引用: 王文全 , 张立翔 , 闫妍 , 郭亚昆 (2011) 混流式水轮机活动导叶动态绕流特性研究。 应用物理, 1, 69-75. doi: 10.12677/app.2011.12011

参考文献

[1] 刘桦, 李家春, 何友声等. “十一五”水动力学发展规划的建议[J]. 力学进展, 2007, 37(1): 141-146.

[2] W. Q. Wang, L. X. Zhang, Y. Yan, et al. Large-eddy simulation of turbulent flow considering inflow wakes in a Francis turbine blade passage. Journal of Hydrodynamics, Ser. B, 2007, 19(2): 201-209.

[3] 张立翔, 王文全, 姚激. 混流式水轮机转轮叶片流激振动分析[J]. 工程力学, 2007, 24(8): 143-150.

[4] 洪冶, 周良画, 蔡维由. 基于传递函数建模的水电站水力过渡过程仿真[J]. 武汉大学学报(工学版), 2007, 40(3): 50-52.

[5] 巨江, 刘菁, 诸亮等. 水电站引水一尾水管道系统水力过渡过程模型试验与计算[J]. 水利学报, 2005, 36(10): 1165-1170.

[6] 刘华, 鞠小明, 张昌兵等. 格鲁吉亚卡杜里电站跨流域引水水力过渡过程[J]. 四川大学学报(工程科学版), 2006, 38(2): 11-14.

[7] S. Conway, D. Caraeni, and L. Fuchs. Large eddy simula-tion of the flow through the blades of a swirl generator. Interna-tional Journal of Heat and Fluid Flow, 2000, 21(5): 664-673.

[8] P. Moin. Advances in large eddy simulation methodology for complex flows. International Journal of Heat and Fluid Flow, 2002, 23(5): 710-720.

[9] M. Tyagi, S. Acharya. Large eddy simulation of turbulent flows in complex and moving rigid ge-ometries using the immersed boundary method. International Journal for Numerical Methods in Fluids, 2005, 48(7): 691-722.

[10] W. Rodi. DNS and LES of some engineering flows. Fluid Dynamics Research, 2006, 38(2-3): 145-173.

[11] J. G. Wissink. DNS of separating low Reynolds number flow in a tur-bine cascade with incoming wakes. International Journal of Heat and Fluid Flow, 2003, 24(4): 626-635.

[12] X. H. Wu, P. A. Durbin. Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. Journal of Fluid Mechanics, 2001, 446(1): 199-228.

[13] M. Germano, U. Piomelli, P. Mion, and W. Cabot. A dynamic subgrid-scale eddy viscosity model. Phys-ics of Fluid A, 1991, 3(7): 1760-1765.

[14] C. Meneveau, J. Katz. Scale-invariance and turbulence models for large eddy simulation. Annual Review of Fluid Mechanics, 2000, 32(1): 1-32.

[15] 王文全, 张立翔,郭亚昆等. 大涡模拟流体结构相互作用下的弯曲槽道湍流特性[J]. 水科学进展, 2008, 19(5): 36-41.

[16] W. W. Kim, S. Menon. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Technical Report AIAA-97-0210. Reno: American Institute of Aeronautics and Astronautics, 35th Aerospace Sciences Meeting, 1997.

[17] S. E. Kim. Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models. Technical Report AIAA-2004-2548. Portland: American Institute of Aero-nautics and Astronautics, 34th Fluid Dynamics Conference and Exhibit, 2004.

[18] F. Mathey, D. Cokljat, J. P. Bertoglio, et al. Assessment of the vortex method for Large Eddy Simulation inlet conditions. Progress in Computational Fluid Dynamics, 2006, 6(1-3): 58-67.

分享
Top