四方晶相SrHfO3弹性性质、电子结构和光学性质的第一性原理计算
First-Principles Calculations of Elastic, Electronic and Optical Properties of Tetragonal SrHfO3 Crystal

作者: 丁建刚 , 冯丽萍 , 刘其军 , 刘正堂 :;

关键词: 四方晶相SrHfO3弹性性质电子结构光学特性第一性原理Tetragonal SrHfO<sub>3</sub> Elastic Properties Electronic Structure Optical Properties First-Principles

摘要:

本文采用基于密度泛函理论(DFT)框架下广义梯度近似平面波超软赝势法,对四方晶相SrHfO3的晶体结构、弹性性质、电子结构和光学性质进行了计算。计算得到的晶格常数与实验值相符;计算结果表明四方SrHfO3的晶体结构是稳定的,属于直接带隙钙钛矿型复合氧化物,最小带隙为3.39 eV;计算并分析了四方SrHfO3在(100)和(001)方向上光学线性响应函数随光子能量的变化关系,包括复介电函数、复折射率、反射光谱、吸收光谱、损失函数和光电导谱;计算得到其静态介电常数在(100)和(001)方向上分别为3.69和3.73,折射率分别为1.92和1.93;计算结果表明了四方SrHfO3在(100)和(001)方向上具有光学各向异性,这为四方SrHfO3的应用提供了理论依据。

Abstract: Structural parameters, elastic properties, electronic structure and optical properties of t-SrHfO3 have been investigated using the plane waves ultrasoft pseudopotential technique based on the density func-tional theory (DFT). The calculated lattice parameters are in good agreement with the experimental data and the calculated elastic constants show that t-SrHfO3 is elastically stable. The calculated results of electronic structure show t-SrHfO3 belongs to direct band gap perovskite composite oxides with the band gap of 3.39 eV. The optical linear response functions of t-SrHfO3 as a function of photon energy were obtained including the complex dielectric function, complex of refractive, reflectivity, absorption coefficients, loss function and complex conductivity function from (100) and (001) directions. The static dielectric constants are 3.69 and 3.73, the refractivity indices are 1.92 and 1.93 from (100) and (001) directions, respectively. The calculated optical properties of t-SrHfO3 show an optical anisotropy in the components of polarization directions (100) and (001), which offer a theoretical basis for the applications of t-SrHfO3.

文章引用: 丁建刚 , 冯丽萍 , 刘其军 , 刘正堂 (2011) 四方晶相SrHfO3弹性性质、电子结构和光学性质的第一性原理计算。 应用物理, 1, 64-68. doi: 10.12677/app.2011.12010

参考文献

[1] 宇霄, 罗晓光, 陈贵锋等. 第一性原理计算XHfO3(X = Ba, Sr)的结构、弹性和电子特性[J]. 物理学报, 2007, 56(9): 5366-5370.

[2] I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii. First-principles calculations of the elastic and electronic properties of the cubic perovskites SrMO3 (M = Ti, V, Zr and Nb) in comparison with SrSnO3. Solid State Sciences, 2008, 10(2): 217-225.

[3] K. Y. Hong, S. H. Kim, Y. J. Heo, et al. Metal-insulator transitions of SrTi1–xVxO3 solid solution system. Solid State Communications, 2002, 123(6-7): 305-310.

[4] C. M. I. Okoye. Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. Journal of Physics: Condensed Matter, 2003, 15(35): 5945-5958.

[5] Y. S. Lee, J. S. Lee, T. W. Noh, et al. Systematic trends in the electronic structure parameters of the 4d transition-metal oxides SrMO3 (M = Zr, Mo, Ru, and Rh). Physical Review B, 2003, 67(11): 113101.

[6] S. W. Lin, Z. L. Xiu, J. A. Liu, et al. Combustion synthesis and characterization of perovskite SrTiO3 nanopowders. Journal of Alloys and Compounds, 2008, 457(1-2): L12-L14.

[7] E. Mete, R. Shaltaf, and Ş. Ellialtıoğlu. Electronic and structural properties of a 4d perovskite: Cubic phase of SrZrO3. Physical Review B, 2003, 68(3): Article ID 035119.

[8] V. M. Longo, L. S. Cavalcante, A. T. De Figneiredo, et al. Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO3 powders. Applied Physics Letters, 2007, 90(9): 091906.

[9] S. Yamanaka, T. Maekawa, H. Muta, et al. Thermophysical properties of SrHfO3 and SrRuO3. Journal of Solid State Chemistry, 2004, 177(10): 3484-3489.

[10] S. Yamanaka, T. Maekawa, H. Muta, et al. Thermal and mechanical properties of SrHfO3. Journal of Alloys and Compounds, 2004, 381(1-2): 295-300.

[11] H. Murata, T. Yamamoto, H. Moriwake, et al. Lattice dynamics and thermal properties of SrHfO3 by first-principles calculations. Physica Status Solidi (B), 2009, 246(7): 1628-1633.

[12] C. Rossel, M. Sousa, C. Marchiori, et al. SrHfO3 as gate dielectric for future CMOS technology. Microelectronic Engineering, 2007, 84(9-10): 1869-1873.

[13] A. Hoffman. Untersuchungen uber Verbindungen mit Perow- skitstruktur. Z. Journal of Physical Chemistry B, 1935, 28(1): 65-77.

[14] B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos. High- temperature phase transitions in SrHfO3. Physical Review B, 1999, 60(5): 2972-2975.

[15] M. Kitamura and H. Chen. Electronic structure calculations of perovskite-type oxides using the self-consistent-charge extended Hückel tight-binding method. Ferroelectrics, 1998, 210(1): 13-29.

[16] R. Vali. Structural phases of SrHfO3. Solid State Communications, 2008, 148(1-2): 29-31.

[17] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al. First-principles simulation: ideas, illustrations and the castep code. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2743.

[18] Q. J. Liu, Z. T. Liu, L. P. Feng, et al. Mechanical and thermodynamic properties of seven phases of SrHfO3: First-principles calculations. Computational Materials Sciences, 2010, 48(3): 677- 679.

[19] A. Reuss, Z. Angew. Berechnung del fliessgrenze von misch- kristallen auf grund der plastizitatbedingung for einkristalle. Math Mech, 1929, 9(1): 49-58.

[20] W. Voigt. Lehrbuch der kristallphysik: Teubner-Leipzig. New York: Macmillan, 1928.

[21] R. Hill. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952, 65(5): 349- 354.

[22] O. Beckstein, J. E. Klepeis, G. L. W. Hart, et al. First-principles elastic constants and electronic structure of α-Pt2Si and PtSi. Physical Review B, 2001, 63(13): Article ID 134112.

[23] M. Sousa, C. Rossel, C. Marchiori, et al. Optical properties of epitaxial SrHfO3 thin films grown on Si. Journal of Applied Physics, 2007, 102(10): Article ID 104103.

分享
Top