基于DEA和决策树的区域创新效率评价与分析
Evaluation and Analysis of the Regional Innovation Efficiencies Based on DEA and Decision Tree

作者: 陈志宗 :同济大学经济与管理学院,上海;

关键词: DEA决策树方法创新效率评价区域创新系统DEA Decision Tree Innovation Efficiencies Evaluation Regional Innovation System

摘要: 科学、客观地评价与分析区域创新系统的效率是分析和制定创新政策的基础,数据包络分析(DEA)是评价区域创新系统(称为决策单元)相对有效性的常用评价方法。决策树模型是呈树形结构,表示基于特征对实例进行分类的过程,是一种应用广泛的可视化数据挖掘的重要工具。本文将结合DEA模型和决策树模型的各自优点,提出综合运用DEA与决策树方法的评价分析模式,在评价我国31个区域创新系统绩效的基础上,建立分类决策树并分析其在制定区域创新系统的战略决策(或政策制定)中的作用。

Abstract: To scientifically and objectively evaluate and analyze the efficiencies of regional innovation systems is a good base to analyze and make policies of regional innovation. Data Envelopment Analysis (DEA) is one of the most used methods for evaluating the efficiency of regional innovation systems (which are referred to Decision Making Units). Decision tree model is a tree structure, which is a process of classification based on feature; it is an important, useful and visual tool of data mining. Combining the advantages of DEA and decision tree model, this paper presents a hybrid model to evaluate and analyze the efficiencies of regional innovation systems using DEA and decision tree method. Based on the evaluation of the efficiencies of 31 regional innovation systems in China, the classification decision tree is established and its role in strategic decision making (or policy making) of regional innovation systems is analyzed.

文章引用: 陈志宗 (2016) 基于DEA和决策树的区域创新效率评价与分析。 管理科学与工程, 5, 186-192. doi: 10.12677/MSE.2016.54020

参考文献

[1] 李海基, 周霞, 李红. 区域创新系统评价综述[J]. 科技管理研究, 2010, 30(1): 13-14.

[2] Charnes, A., Cooper, W.W. and Rhodes, E. (1978) Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2, 429-444.
https://doi.org/10.1016/0377-2217(78)90138-8

[3] 刘顺忠, 官建成. 区域创新系统创新绩效的评价[J].中国管理科学, 2002, 10(1): 75-78.

[4] 池仁勇, 唐根年. 基于投入与绩效评价的区域技术创新效率研究[J]. 科研管理, 2004, 25(4): 23-27.

[5] 白俊红, 江可申, 李靖. 中国区域创新系统创新效率综合评价及分析[J]. 科技管理与科技政策, 2009, 21(9): 2-8.

[6] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.

[7] 杨会志, 张雅洁. 基于DEA与决策树方法的企业规模收益问题研究[J]. 计算机工程, 2002, 28(1): 220-221.

[8] Wu, D. (2006) Detecting Information Technology Impact on Firm Performance Using DEA and Decision Tree. International Journal of Information Technology and Management, 5, 162-174.
https://doi.org/10.1504/IJITM.2006.010116

[9] 吴和成, 刘思峰. 基于改进DEA的地域R&D相对效率评价[J]. 研究与发展管理, 2007, 19(2): 108-112.

[10] 中国科技部. 中国科技统计数据2013 [R]. http://www.sts.org.cn/sjkl/kjtjdt/data2013/

[11] 中国科技部. 中国高技术产业数据2014 [R]. http://www.sts.org.cn/sjkl/gjscy/data2014/data14.pdf

[12] 中国科技信息研究所. 中国主要科技指标数据库——省市主要指标(2008-2013) [EB/OL]. http://www.sts.org.cn/kjnew/maintitle/sub.asp?Main=15.

分享
Top