岩石铸体薄片图像孔隙自动提取方法
The Automatic Extraction Method of the Pore of the Rock Casting Body Image

作者: 代 贺 * , 滕奇志 :四川大学电子信息学院,图像信息研究所,四川 成都; 伦增珉 :中国石油化工股份有限公司石油勘探开发研究院,页岩油气富集机理与有效开发国家重点实验室,北京;

关键词: 岩石铸体薄片H分量样本训练自动提取Rock Casting Body H Components Sample Training Automatic Extraction

摘要:
针对传统岩石铸体薄片图像孔隙提取耗时、效率低的问题,提出了一种自动快速提取方法。首先,由于采用染色树脂或液态胶加工生成的铸体薄片其特征区域均有一定的颜色,例如:深蓝、浅蓝、深红、浅红等,通过对铸体薄片特征区域颜色的分析发现不同颜色的铸体薄片其彩色空间H(色调)分量分布具有一定的集中性;其次,采用样本训练,即计算出样本特征区域的H分量的阈值;最后,利用该阈值对同批铸体薄片图像进行直接提取即可。这样就实现了岩石铸体薄片图像的孔隙自动提取。

Abstract: To solve the problems of time consuming and low efficiency in the traditional extraction of pore analysis from rock casting body image, an entirely new method of extraction of pore analysis from rock casting body image was proposed. Firstly, the rock casting body, which is produced by the pigmented resin or liquid glue, has a certain color, such as dark blue, light blue, dark red, light red and so on. The different characteristic regions have a certain concentration of H components by the analysis of the characteristic region. Secondly, using sample training, that is to say, the threshold value of the H components of the sample characteristic region is calculated. Finally, by using the threshold value of the H components, the same batch of rock casting body image can be extracted directly. In this way, we can realize the automatic extraction of the pore of the rock casting body image.

文章引用: 代 贺 , 滕奇志 , 伦增珉 (2017) 岩石铸体薄片图像孔隙自动提取方法。 图像与信号处理, 6, 17-28. doi: 10.12677/JISP.2017.61003

参考文献

[1] 杨修国. 关于直方图双峰法的研究与改进[J]. 电子设计工程, 2012, 20(12): 176-179.

[2] Li, X.C., Zhao, L. and Zhao, S.H. (2010) The Establishment and Application of Based on DSP Image Processing Dynamic Multi-Threshold Template. 2010 2nd International Conference on Future Computer and Communication (ICFCC), 21-24 May 2010, V2-828-V2-832.

[3] 陈琪, 熊博莅, 陆军, 等. 改进的二维Otsu图像分割方法及其快速实现[J]. 电子与信息学报, 2010, 32(5): 1100- 1104.

[4] Alsaeed, D.H., Bouridane, A., Elzaart, A., et al. (2012) Two Modified Otsu Image Segmentation Methods Based on Lognormal and Gamma Distribution Models. International Conference on Information Technology and E-Services, Sousse, 24-26 March 2012, 1-5. https://doi.org/10.1109/icites.2012.6216680

[5] 张爱华. 一种基于熵优化的区域生长图像分割方法[J]. 华中科技大学学报(自然科学版), 2004, 32(7): 40-42.

[6] Gorsevski, P.V., Onasch, C.M., Farver, J.R., et al. (2002) Detecting Grain Boundaries in Deformed Rocks Using a Cellular Automata Approach. Computers & Geosciences, 42, 136-142. https://doi.org/10.1016/j.cageo.2011.09.008

[7] Zhou, Y., Starkey, J. and Mansinha, L. (2004) Segmentation of Petrographic Images by Integrating Edge Detection and Region Growing. Computers & Geosciences, 30, 817-831. https://doi.org/10.1016/j.cageo.2004.05.002

[8] Heilbronner, R. (2000) Automatic. Grain Boundary Detection and Grain Size Analysis Using Polarization Micrographs or Orientation Images. Journal of Structural Geology, 22, 969-981. https://doi.org/10.1016/S0191-8141(00)00014-6

[9] Liu, M.S., Li, J. and Liu, H. (2013) The Colour and Texture—A Novel Image Retrieval Technology Based on Human Vision. International Journal of Innovative Computing & Applications, 5, 47-56. https://doi.org/10.1504/IJICA.2013.052354

[10] Gonzalez, R.C., Woods, R.E. and Masters, B.R. (2009) Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14, 257-262. https://doi.org/10.1117/1.3115362

分享
Top