岩石物理模板在时移地震定量研究中的应用
Quantitative Interpretation of Time-Lapse Seismic Based on Rock Physics Template

作者: 高云峰 * , 王宗俊 , 张显文 , 蔡文涛 , 董洪超 :中海油研究总院,北京;

关键词: 岩石物理模板时移地震剩余油预测定量解释Rock Physics Template Time-Lapse Seismic Prediction of Remaining Oil Quantitative Interpretation

摘要:
针对时移地震定量研究难题,提出了一套岩石物理模板构建技术,并应用于时移地震可行性分析和剩余油分布定量预测。该技术是在井资料的约束下,通过Hertz-Mindlin接触模型结合Hashin-Shtrikman界限模型得到与地质特征匹配的岩石物理模板,并通过改变孔隙度、泥质含量、流体性质、温度和孔隙压力等参数模拟各种条件下含油饱和度变化后各种弹性参数的变化规律,进而用于时移地震定量研究。S油田的实际应用表明该技术的预测结果与实钻结果有较高的吻合程度。

Abstract: In this paper, a technique of rock physics template construction is proposed and applied in time-lapse seismic feasibility analysis and quantitative prediction of remaining oil distribution. Based on well data, the Hertz-Mindlin contact model and the Hashin-Shtrikman lower bound model, forward modeling with different parameters such as porosity, shale content, fluid properties, oil saturation, and temperature and pore pressure was carried out to get data for rock physics template. With the rock physics template matched with geological features, we can get quantitative regulation between elastic parameters and oil saturation under various conditions, which can be used for time-lapse seismic interpretation. The practical application shows that the time-lapse seismic prediction is in good agreement with the well drilling results in S oilfield.

文章引用: 高云峰 , 王宗俊 , 张显文 , 蔡文涛 , 董洪超 (2016) 岩石物理模板在时移地震定量研究中的应用。 应用物理, 6, 288-295. doi: 10.12677/APP.2016.612036

参考文献

[1] 周家雄, 谢玉洪, 陈志宏, 等. 时移地震在中国海上气田的应用[J]. 石油地球物理勘探, 2011, 46(2): 285-292.

[2] 周水生, 刘洪, 王冲, 等. 基于岩石物理实验的时移地震研究[J]. 地球物理学进展, 2013, 28(4): 1739-1748.

[3] 郭念民, 吴国忱. 非重复采集时移地震正演模拟及可行性分析[J]. 地球物理学进展, 2012, 27(1): 232-245.

[4] 李景叶, 陈小宏. 时移地震油藏监测可行性分析评价技术[J]. 石油物探, 2012, 51(2): 125-132.

[5] 云美厚, 丁伟, 杨长春. 油藏水驱开采时移地震监测岩石物理基础测量[J]. 地球物理学报, 2006, 49(63): 1813- 1818.

[6] 张显文. 岩石物理分析技术在时移地震中的应用研究[J]. 应用物理, 2016, 6(4): 68-76.

[7] 马淑芳, 韩大匡, 甘利灯, 等. 地震岩石物理模型综述[J]. 地球物理学进展, 2010, 25(2): 460-471.

[8] Gregory, A.R. (1976) Fluid Saturation Effects on Dynamic Elastic Properties of Sedimentary Rocks. Geophysics, 41, 895-921.
https://doi.org/10.1190/1.1440671

[9] Clark, V.A. (1992) The Properties of Oil Under In-Situ Conditions and Its Effect on the Seismic Properties of Rocks. Geophysics, 57, 894-901.
https://doi.org/10.1190/1.1443302

[10] 史謌, 沈文略, 杨东全. 岩石弹性波速度和饱和度、孔隙流体分布的关系. 地球物理学报, 2003, 46(1): 138-142.

[11] Batzle, M. and Wang, Z. (1992) Seismic Properties of Pore Fluids. Geophysics, 57, 1396-1408.
https://doi.org/10.1190/1.1443207

[12] Wang, Z. (2001) Fundamentals of Seismic Rock Physics. Geophysics, 66, 398-412.
https://doi.org/10.1190/1.1444931

[13] Odegaard, E. and Avseth, P. (2004) Well Log and Seismic Data Analysis Using Rock Physics Templates. First Break, No. 23, 37-43.

[14] 张广智, 陈娇娇, 陈怀震, 张金强, 印兴耀. 基于岩石物理模板的碳酸盐岩含气储层定量解释[J]. 吉林大学学报(地球科学版), 2015, 45(2): 630-638.

[15] Nabajyoti Boruah 著, 董娜, 编译. 用测井岩石物理模板分析法识别岩性及流体[J]. 油气地球物理, 2014, 12(4): 70-73.

[16] 张万龙, 孙赞东, 贺薪蔚, 等. 地震岩石物理模板应用中的两个关键问题[J]. 地球物理学进展, 2015, 30(5): 2324-2329.

分享
Top