超奈奎斯特速率(FTN)传输进展
A Survey on Faster-Than-Nyquist Signaling

作者: 左崇彦 , 吴乐南 :东南大学信息科学与工程学院,江苏 南京;

关键词: 超奈奎斯特速率(FTN)码间干扰限制信道容量Faster-Than-Nyquist Signaling (FTN) Intersymbol Interference (ISI) Constrained Capacities

摘要:
在数字通信系统中,奈奎斯特准则指出,为了实现无码间干扰的传输,符号速率必须满足奈奎斯特准则。然而1975年Mazo发现在带限加性高斯白噪声信道中,当码元速率超过奈奎斯特速率在25%以内时,信号的归一化最小欧式距离并不会减小,并称为Faster-Than-Nyquist signaling (超奈奎斯特,FTN)。本文首先介绍FTN传输的发展历史,分析FTN系统的Mazo限,并对FTN传输以及奈奎斯特速率下的限制信道容量进行比较。从仿真结果可以看出,当脉冲存在过剩带宽时,FTN传输可以得到比奈奎斯特速率下更高的信道容量。

Abstract: In digital communication system, the Nyquist criterion states that the symbol rate must satisfy the Nyquist criterion in order to achieve transmission without intersymbol interference. However, in 1975, Mazo found that in band-limited Additive White Gaussian Noise channel, the normalized minimum Euclidean distance does not decrease when the symbol rate exceeds within 25% of the Nyquist rate and name it as Faster-Than-Nyquist signaling (FTN). In this paper, we first introduce the history of FTN transmission, analyze the Mazo limit of FTN system, and finally compare the capacity of FTN and Nyquist rate transmission. Simulation result shows that when the transmitted pulse has excessive bandwidth, FTN transmission can achieve higher capacity than transmission under Nyquist rate.

文章引用: 左崇彦 , 吴乐南 (2016) 超奈奎斯特速率(FTN)传输进展。 无线通信, 6, 123-132. doi: 10.12677/HJWC.2016.66016

参考文献

[1] Barry, J.R., Lee, E.A. and Messerschmitt, D.G. (2003) Digital Communication. Springer Science & Business Media, Norwell, MA.

[2] Mazo, J.E. (1975) Faster-Than-Nyquist Signaling. The Bell System Technical Journal, 54, 1451-1462. https://doi.org/10.1002/j.1538-7305.1975.tb02043.x

[3] Rusek, F. and Anderson, J.B. (2009) Multistream Faster Than Nyquist Signaling. IEEE Transactions on Communications, 57, 1329-1340. https://doi.org/10.1109/TCOMM.2009.05.070224

[4] Colavolpe, G. (2011) Faster-Than-Nyquist and Beyond: How to Improve Spectral Efficiency by Accepting Interference Giulio Colavolpe. 37th European Conference and Exhibition on Optical Communication, Geneva, 18-22 September 2011, 1-25.

[5] Tufts, D.W. (1965) Nyquist’s Problem: The Joint Optimization of Transmitter and Receiver in Pulse Amplitude Modulation. Proceedings of the IEEE, 53, 248-259. https://doi.org/10.1109/PROC.1965.3682

[6] Cahn, C. (1971) Worst Interference for Coherent Binary Channel (Corresp.). IEEE Transactions on Information Theory, 17, 209-210.

[7] Salz, J. (1973) Optimum Mean-Square Decision Feedback Equalization. The Bell System Technical Journal, 52, 1341- 1373. https://doi.org/10.1002/j.1538-7305.1973.tb02023.x

[8] Wang, C.-K. and Lee, L.-S. (1995) Practically Realizable Digital Transmission Significantly below the Nyquist Bandwidth. IEEE Transactions on Communications, 43, 166-169. https://doi.org/10.1109/26.380028

[9] Liveris, A.D. and Georghiades, C.N. (2003) Exploiting Fast-er-Than-Nyquist Signaling. IEEE Transactions on Communications, 51, 1502-1511. https://doi.org/10.1109/TCOMM.2003.816943

[10] Rusek, F. (2007) Partial Response and Faster-Than-Nyquist Signaling. Lund University, Lund.

[11] Rusek, F. and Anderson, J.B. (2005) The Two Dimensional Mazo Limit. Proceedings of International Sym-posium on Information Theory, Adelaide, 4-9 September 2005, 970-974.

[12] Rusek, F. and Anderson, J.B. (2009) Constrained Ca-pacities for Faster-Than-Nyquist Signaling. IEEE Transactions on Information Theory, 55, 764-775. https://doi.org/10.1109/TIT.2008.2009832

[13] Yoo, Y.G. and Cho, J.H. (2010) Asymptotic Optimality of Binary Fast-er-Than-Nyquist Signaling. IEEE Communications Letters, 14, 788-790. https://doi.org/10.1109/LCOMM.2010.072910.100499

[14] Kanaras, I., Chorti, A., Rodrigues, M.R.D., et al. (2009) Spectrally Effi-cient FDM Signals: Bandwidth Gain at the Expense of Receiver Complexity. IEEE International Conference on Communications, Piscataway, NJ, 14-18 June 2009, 1-6.

[15] Tipsuwannakul, E., Karlsson, M. and Andrekson, P.A. (2012) Exploiting the Fast-er-Than-Nyquist Concept in Wavelength-Division Multiplexing Systems Using Duobinary Shaping. ResearchGate, 1, 8.

[16] Sen, P., Aktas, T. and Yilmaz, A.O. (2014) A Low-Complexity Graph-Based LMMSE Receiver Designed for Colored Noise Induced by FTN-Signaling. IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, 6-9 April 2014, 642–647.

[17] Mazo, J.E. and Landau, H.J. (1988) On the Minimum Distance Problem for Faster-Than-Nyquist Signaling. IEEE Transactions on Information Theory, 34, 1420-1427. https://doi.org/10.1109/18.21281

[18] Hajela, D. (1990) On Computing the Minimum Distance for Faster than Nyquist Signaling. IEEE Transactions on Information Theory, 36, 289-295. https://doi.org/10.1109/18.52475

[19] Ungerboeck, G. (1974) Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Da-ta-Transmission Systems. IEEE Transactions on Communications, 22, 624-636. https://doi.org/10.1109/TCOM.1974.1092267

[20] Forney, G. (1972) Maximum-Likelihood Sequence Estimation of Digital Se-quences in the Presence of Intersymbol Interference. IEEE Transactions on Information Theory, 18, 363-378. https://doi.org/10.1109/TIT.1972.1054829

[21] Shannon, C.E. (2001) A Mathematical THEORY of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5, 3-55. https://doi.org/10.1145/584091.584093

[22] Shamai, S., Ozarow, L.H. and Wyner, A.D. (1991) Information Rates for a Discrete-Time Gaussian Channel with Intersymbol Interference and Stationary Inputs. IEEE Transactions on Information Theory, 37, 1527-1539. https://doi.org/10.1109/18.104314

[23] Sasahara, H., Hayashi, K. and Nagahara, M. (2016) Symbol Detection for Faster-than-Nyquist Signaling by Sum-of- Absolute-Values Optimization. IEEE Signal Processing Letters, 23, 1853-1857.

[24] Ishihara, T. and Sugiura, S. (2016) Frequency-Domain Equalization Aided Iterative Detection of Faster-than-Nyquist Signaling with Noise Whitening. IEEE International Conference on Communications (ICC), Kuala Lumpur, 22-27 May 2016, 1-6.

分享
Top