基于FSVM锅炉烟气含氧量软测量
Boiler Flue Gas Oxygen Content Soft Sensor Based on FSVM

作者: 刘真 , 周玉国 , 谢世龙 :青岛理工大学,山东 青岛;

关键词: FSVM烟气含氧量软测量预测模型FSVM Flue Gas Oxygen Content Soft Measurement Prediction Model

摘要: 针对电站锅炉燃烧过程存在的高度的复杂性和非线性问题,本文采用模糊支持向量机(FSVM)建立含氧量预测模型,预测在不同燃料量、总风量、总给水量等因素的影响下烟气含氧量的含量。选取模糊C均值算法(FCM)作为隶属度函数的设计方法,然后选取径向基核函数(RBF)和ε-SVR模型结构,其中惩罚因子和松弛变量的最佳参数值要用交叉验证法来选取。Matlab仿真实验结果表明,该方法有效地缩短了训练时间,提高了预测精度和模型的抗噪性,其性能优于一般支持向量机预测模型。

Abstract: For power plant boiler combustion process of a high degree of complexity and nonlinear problem, fuzzy support vector machine (FSVM) is adopted to establish the prediction models of oxygen forecast in different fuel quantity, total air volume and total yield, total steam flow under the in-fluence of factors such as flue gas oxygen content. We select fuzzy c-means algorithm (FCM) as a design method of membership function, then select the radial basis kernel function (RBF) and ε-SVR model structure, and choose the penalty factor and the optimum parameter value of slack variable to use cross validation method. Matlab simulation experiment results show that this method can effectively shorten the training time, improve the prediction precision and the model of noise resistance; and its performance is superior to the general support vector machine forecasting model.

文章引用: 刘真 , 周玉国 , 谢世龙 (2016) 基于FSVM锅炉烟气含氧量软测量。 建模与仿真, 5, 205-209. doi: 10.12677/MOS.2016.54026

参考文献

[1] 马芳芳. 模糊支持向量机算法及其在一次风量测量中的应用[D]: [硕士学位论文]. 北京: 华北电力大学, 2013: 11-40.

[2] 张捷夫. 电站锅炉烟气含氧量软测量方法研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2014: 20-33.

[3] 王勇, 刘保军, 李琛. 软测量技术的新进展及其在火电厂热工过程中应用[J]. 长春工程学院学报(自然科学版), 2006, 7(4): 55-57.

[4] 徐艳芳. 改进支持向量回归机及其在过程建模与控制中的应用[D]: [博士学位论文]. 上海: 华东理工大学, 2004.

[5] 傅永峰. 软测量建模方法研究及其工业应用[D]: [博士学位论文]. 杭州: 浙江大学, 2007.

[6] 杨庆柏, 厉鹏. 氧气传感器及其在火电厂的应用[J]. 传感器世界, 2001, 7(9): 22-24.

[7] 程启明, 郭瑞青, 杜许峰, 郑勇. 火电厂烟气含氧量测量的现状与发展[J]. 电站系统工程, 2008, 24(6): 1-4.

[8] 于振亚, 王闻侠, 潘丰. 模糊支持向量机在青霉素发酵中的应用[J]. 微计算机信息, 2007, 23(19): 300-302.

[9] Han, P., Q, H., W, D.F. and Zhai, Y.J. (2007) Development and Current Status of Thermal Parameter Soft-Sensing Technique in Power Plant. Chinese Journal of Scientific Instrument, 28, 1139-1146.

[10] Niu, D.X., Wang, Y.L. and Ma, X.Y. (2010) Optimization of Support Vector Machine Power Load Forecasting Model Based on Data Mining and Lyapunov Exponents. Journal of Central South University of Technology, 17, 406-412.

分享
Top