生物能量在蛋白质分子中传递的特性和理论研究
The Investigation of Properties and Theory of Bio-energy Transport in Protein Molecules

作者: 庞小峰 :;

关键词: 蛋白质分子 生物能量传递理论孤子非线性理论Protein Molecule Bio-energy Transported Theory Soliton Nonlinear Theory

摘要:

生物能量在生物体当中的传递是生命科学当中的一个基本问题,它相关于ATP水解放出的能量沿着蛋白质分子的传递,它与蛋白质的动力学特性相关。根据ATP分子水解反应的特性以及蛋白质结构的特点,在Davydov理论的基础上提出了一个新的生物能量传递的理论。在这个理论当中,Amide的振动的集体激发状态用一个两量子准相干态表示,系统的哈密顿量不但包含了Amide振动引起的相邻氨基酸残基的位移,而且包含了相邻Amide之间的共振相互作用所引起的氨基酸残基的相对位置的改变。由这个理论得出的传递生物能量的孤子在生理温度300 K时是热稳定的,它的寿命可达10–10秒,在这个时间之内孤子能传递过上千个氨基酸残基,因此它能在生物过程中起着重要的作用。于是,它是生物体中生物能量传递的一个可利用和正确的理论。

Abstract: Abstract: Bio-energy transport in the living systems is a basic problem for the life science. It is related to transport of the energy released in APT hydrolysis along the protein molecules, and is determined by dynamic properties of the protein molecules. According to the distribution of ATP molecules and its features of hydro-lysis and structure properties of protein molecules we proposed a new theory of bio-energy transport in pro-tein molecules based on the difficulties and problems of original Davydov model. In this new model we represented the collective excitation of vibrational quanta of amide-I by a two-quantum quasi-coherent wave function, at the same time, both displacement of amino acid residues arising from the vibration of amide-Is and relative displacement of neighboring amino acids caused by resonant interaction between neighboring amides were included in the new Hamiltonian. We obtained that the new soliton transported the bio-energy obtained from the new theory is completely different from Davydov soliton, and thermally stable at biological temperature 300 K, in this case its lifetime is about 10–10 second, in which the new soliton can transport over more than one thousand of amino acid residues in protein molecules. This shows that the soliton is possibly a carrier of the bio-energy transport, and can play an important role in biological processes. Therefore, the new theory is available and valuable to bio-energy transport in living science.

文章引用: 庞小峰 (2011) 生物能量在蛋白质分子中传递的特性和理论研究。 应用物理, 1, 47-59. doi: 10.12677/app.2011.12008

参考文献

[1] J. A. S. Davydov. The theory of contraction proteins under their excitation. Journal of Theoretical Biology, 1973, 38(3): 559-569.

[2] A. S. Davydov. Biology and quantum mechanics. New York: Pergamon, 1982: 46-169.

[3] 庞小峰. 生物物理学[M]. 成都: 电子科技大学出版社, 2007: 158-254.

[4] A. S. Davy-dov. Solitons in molecular systems. Physica Scripta, 1979, 20(3-4): 387-394.

[5] A. S. Davydov. The lifetime of molecu-lar solitons. Journal of Biological Physics, 1991, 18(2): 111-125.

[6] A. S. Davydov. The solitons in molecular systems. Dordrecht: Reidel, 1991.

[7] A. C. Scott. Dynamics of Davy-dov’s soliton. Physical Review A, 1982, 26(1): 578-595.

[8] A. C. Scott. Davydov’s soliton. Physics Report, 1992, 217(1): 1-66.

[9] D. W. Brown, Z. Ivic. Unification of polaron and soli-ton theories of exciton transport. Physical Review B, 1989, 40(14): 9876-9887.

[10] D. W. Brown, B. J. West, and K. Lindenberg. Nonlinear density-matrix equation for the study of fi-nite-temperature soliton dynamics. Physical Review B, 1987, 35(12): 6169-6181.

[11] X. F. Pang. The properties of bio-energy transport in protein molecules. Chinese Journal Bio-chemistry and Biophysics, 1986, 18(1): 1-7.

[12] X. F. Pang. The features of Davydov soliton excited in protein molecules. Chinese Journal Atom Molecular. Physics, 1986, 6(2): 275-284.

[13] P. L. Christiansen, A. C. Scott. Self-trapping of vibrational energy. New York: Plenum Press, 1990: 15-345.

[14] L. Cruzeiro-Hansson. Two reasons why the Davy-dov soliton may be thermally stable afterall. Physical Review Letters, 1994, 73(21): 2927-2930.

[15] L. Cruzeiro-Hansson. Mechanism of thermal destabilization of the Davydov soliton. Physical Review A, 1992, 45(6): 4111-4115.

[16] W. . Quantum and disorder effects in Davydov soliton theory. Physi-cal Review A, 1991, 44(4): 2694-2708.

[17] W. . Quantum and temperature effects on Davydov soliton dynamics: Averaged Hamiltonian method. Journal of Physics: Condensed Matter, 1992, 4(8): 1915-1923.

[18] P. S. Lomdahl, W. C. Kerr. Do Davydov solitons exist at 300 K?. Physical Review Letters, 1985, 55(11): 1235-1238.

[19] W. C. Kerr, P. S. Lomdahl. Quantum-mechanical derivation of the equations of motion for Davydov solitons. Physical Review B, 1987, 35(7): 3629-3632.

[20] X. Wang, D. W. Brown, and K. Lindenberg. Quantum Monte Carlo simulation of Davydov model. Physical Review Letters, 1989, 62(15): 1796-1799.

[21] X. Wang, D. W. Brown, and K. Lindenberg. Alternative formulation of Davydov theory of energy transport in biomolecules systems. Physical Review A, 1988, 37(9): 3557-3566.

[22] J. P. Cottingham, J. W. Schweitzer. Calculation of the lifetime of a Davydov soliton at finite temperature. Physical Review Lettes, 1989, 62(15): 1792-1795.

[23] J. W. Schweitzer. Lifetime of the Davydov soliton. Physical Review A, 1992, 45(12): 8914-8922.

[24] J. M. Hyman, D. W. Mclaughlin, and A. C. Scott. On Davydov’s al-pha-helix solitons. Physica D: Nonlinear Phenomena, 1981, 3(1-2): 23-44.

[25] A. F. Lawrence, J. C. McDaniel, D. B. Chang, et al. Dynamics of the Davydov model in alpha-helical proteins: Effects of the coupling parameter and temperature. Physical Review A, 1986, 33(2): 1188-1201.

[26] W. . Davydov soliton dynamics: Two-quantum states and diagonal dis-order. Journal of Physics: Condensed Matter, 1991, 3(19): 3235-3254.

[27] X. F. Pang. The properties of collective excita-tion in organic protein molecular system. Journal of Physics: Condensed Matter, 1990, 2(48): 9541-9552.

[28] X. F. Pang. Comment “the thermodynamic properties of α-hili protein, a soliton approach”. Physical Review, 1994, 49(5): 4747-4751.

[29] X. F. Pang. Influence of the soliton in anhar-monic molecular crystals with temperature on Mossbauer Effect. Eupopean Physical Journal B, 1999, 10(3): 415-428.

[30] 庞小峰. 非线性量子理论[M]. 重庆: 重庆出版社, 1994: 233-293.

[31] X. F. Pang. An improvement of the Davydov theory of bio-energy transport in the protein molecular systems. Physical Review E, 2000, E62(5): 6989-6998.

[32] X. F. Pang, Y. P. Feng. Quantum mechanics in nonlinear systems. New Jersey: World Science Publishing Co., 2005: 471-551.

[33] 庞小峰. 孤子物理学[M]. 成都: 四川科技出版社, 2003: 485-524.

[34] 郭柏灵, 庞小峰. 孤立子[M]. 北京: 科学出版社, 1987: 10- 45.

[35] E. Young, P. B. Shaw, and G. Whitfield. Asymptotic spectrum of momentum eigenstates of one-dimensional polarons. Physical Review B, 1979, 19(2): 1225-1229.

[36] G. Venzl, S. F. Fischer. Improvement of the Davydov theory of bioenergy transport in protein molecular systems. The Journal of Physical Chemistry, 1984, 81(11): 6090-6095.

[37] J. F. Nagle, M. Mille and H. J. Morowitz. Dynamics of ionic defects and lattice soliton in thermalized hydrogen-bonded chain. The Journal of Physical Chemistry, 1980, 72(7): 3959-3971.

分享
Top