圆锥滚子修形对接触副应力分布的影响
Effects of Tapered Roller Crowing on Contact Stress Distribution

作者: 何贞志 , 邵明辉 , 吴金河 :江苏师范大学机电工程学院,江苏 徐州;

关键词: 滚子修形应力分布影响系数法Roller Crowning Stress Distribution Influence Coefficient Method

摘要: 滚动轴承中的滚子修形是减小接触副边缘处应力集中、提高轴承疲劳寿命的重要手段。本文建立了修形圆锥滚子–滚道接触模型,基于影响系数法进行求解,分别计算了轻载和重载工况下接触副的接触应力分布,并针对不同滚子修形对接触应力的影响进行了分析。结果表明,滚子的对数修形改善应力分布的效果较优,最佳修形曲线与实际工况条件相对应;圆锥滚子–滚道接触副的应力分布并不是关于滚子中线对称的,且滚子小端的接触应力大于滚子大端的接触应力。

Abstract: Roller crowning of rolling element bearings is an important means to reduce the stress concentra-tion at the edge of contact pairs, and to improve bearing fatigue life. The contact model of crowned tapered roller/raceway contact pair is established in this paper, which is solved based on influence coefficient method. The stress distribution of contact pair under light load and heavy load conditions are calculated respectively, and then the effects of tapered roller with different crowning curves on the contact stress distribution are analyzed. The results show that the logarithmic crowning has an optimal effect on contact stress distribution. However, the optimum modification curve corresponds to the actual working conditions. Moreover, the contact stress distribution of tapered roller/raceway contact pair is not symmetrical about the center line of roller, and the contact stress of the small end of roller is greater than the stress of the large end.

文章引用: 何贞志 , 邵明辉 , 吴金河 (2016) 圆锥滚子修形对接触副应力分布的影响。 机械工程与技术, 5, 299-306. doi: 10.12677/MET.2016.54036

参考文献

[1] Poplawski, J.V., Peters, S.M. and Zaretsky, E.V. (2001) Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction—Part II Comparison of Roller Profiles. Tribology Transactions, 44, 417-427.
http://dx.doi.org/10.1080/10402000108982476

[2] Zhang, H.W. and Chen, J.Q. (2012) Numerical Simulation Research on the Crowned Design by Multiple-Variable- Curvature Arcs for Cylindrical Roller Bearing. Applied Mechanics and Materials, 148, 591-594.
http://dx.doi.org/10.4028/www.scientific.net/AMM.262.591

[3] Fujiwara, H., Kobayashi, T., Kawase, T. and Yamauchi, K. (2010) Optimized Logarithmic Roller Crowning Design of Cylindrical Roller Bearings and Its Experimental Demonstration. Tribology Transactions, 53, 909-916.
http://dx.doi.org/10.1080/10402004.2010.510619

[4] Ju, S.H., Horng, T.L. and Cha, K.C. (2000) Comparisons of Contact Pres-sures of Crowned Rollers. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology, 214, 147-156.
http://dx.doi.org/10.1243/1350650001543061

[5] Wang, Z.W., Meng, L.Q., Hao, W.S. and Zhang, E. (2011) Feasibility Analysis of Solving Contact Problem of Roller Bearing by Finite Element Method. Advances in Rolling Equipment and Technologies. Trans Tech Publications Ltd., Stafa, 145, 68-72.

[6] 马家驹. 滚子凸度设计[J]. 轴承, 1992(1): 11-15.

[7] 李思成, 陈晓阳, 陈爱华, 马纯青. 重载下调心滚子轴承接触应力分析及凸形设计[J]. 轴承, 2010(4): 1-6.

[8] 王爱林, 王庆九, 汪久根. 对数修形圆锥滚子的接触分析[J]. 机械科学与技术, 2012, 31(5): 836-841.

[9] Creţu, S., Antaluca, E. and Creţu, O. (2003) The Study of Non-Hertzian Concentrated Contacts by a GC-DFFT Technique. Annals of “Dunărea de Jos” University of Galaţi Fascicle VIII-Tribology, 8, 39-47.

[10] Hoeprich, M. (1985) Numerical Procedure for Designing Rolling Element Contact Geometry as a Function of Load Cycle. SAE Technical Paper Series 850764.
http://dx.doi.org/10.4271/850764

[11] 罗继伟. 滚动轴承中的弹性接触问题及其数值求解[D]: [博士学位论文]. 机械学. 北京: 清华大学, 1989.

[12] 罗天宇, 罗继伟. 圆柱滚子的弹性趋近量[J]. 轴承, 2009(6): 8-10.

[13] Johns, P.M. and Gohar, R. (1981) Roller Bearings under Radial and Eccentric Loads. Tribology In-ternational, 14, 131- 136.
http://dx.doi.org/10.1016/0301-679X(81)90058-X

[14] 马家驹, 徐文, 刘双表, 王晨. 对数滚子的工程设计[J]. 轴承, 1997(6): 2-5.

[15] Fujiwara, H. and Kawase, T. (2006) Logarithmic Profiles of Rollers in Roller Bearings and Optimization of the Profiles. Proceedings of the JSME Part C, 72, 3022-3029.
http://dx.doi.org/10.1299/kikaic.72.3022

[16] Ahmadi, N., Keer, L.M. and Mura, T. (1983) Non-Hertzian Contact Stress Analysis for an Elastic Half Space-Normal and Sliding Contact. International Journal of Solids and Structures, 19, 357-373.
http://dx.doi.org/10.1016/0020-7683(83)90032-X

[17] Harris, T.A. and Kotzalas, M.N. (2001) Rolling Bearing Analysis. CRC Press, Boca Raton, 112-120.

分享
Top