共沉淀法制备LaFeXCo1-XO3钙钛矿的研究
Preparation of LaFeXCo1-XO3 Perovskite by Coprecipitation

作者: 杨雨晴 :郑州外国语学校,河南 郑州; 石 凯 :河南工业大学材料科学与工程学院,河南 郑州;

关键词: 共沉淀法LaFeXCo1-XO3钙钛矿TG-DSCXRDCoprecipitation LaFeXCo1-XO3 Perovskite TG-DSC XRD

摘要:
以La(NO3)3ž6H2O、Co(NO3)3ž6H2O和Fe(NO3)3ž9H2O为原料,用共沉淀法对制备LaFexCo1−xO3 (x = 0.2, 0.5, 0.8)钙钛矿进行研究。热重–差示量热分析(TG-DSC)和X射线衍射(XRD)分析表明,合成LaFexCo1−xO3钙钛矿过程有四段失重,分别在110℃之前、150℃~220℃、300℃~500℃和700℃~780℃;经过700℃~800℃煅烧后有钙钛矿形成,之后随煅烧温度提高,钙钛矿生成量逐渐增加,晶粒尺寸也缓慢增加,煅烧温度为1000℃时获得钙钛矿的量最多,但是与800℃和900℃煅烧后形成钙钛矿相比,其晶粒尺寸增加较多;随着Fe取代Co的量增加,形成钙钛矿尺寸晶粒尺寸逐渐降低。

Abstract: Preparation of LaFexCo1−xO3 (x = 0.2, 0.5, 0.8) perovskite by coprecipitation using La(NO3)3ž6H2O, Co(NO3)3ž6H2O和Fe(NO3)3ž9H2O and Fe(NO3)3ž9H2O as raw materials was researched. The phenomena observed were characterized using Thermogravimetry-Differential Scanning Calorimetric (TG-DSC) and X- ray diffraction (XRD). Results showed that process of preparing LaFexCo1−xO3 perovskite appeared four period of weight loss at less than 110˚C, 150˚C - 220˚C, 300˚C - 500˚C and 700˚C - 780˚C, respectively. The sample calcined at 700˚C - 800˚C has already formed perovskite, then amount of forming perovsktie and the grain size of perovskite increase gradually with the calcination temperature. When calcination temperature is at 1000˚C, the most amount of perovskite is gained, but the grain size increases more than that of perovskite calcined at 800˚C and 900˚C. With the increase of substitute Fe for Co, perovskite particle size is gradually reduced.

文章引用: 杨雨晴 , 石 凯 (2016) 共沉淀法制备LaFeXCo1-XO3钙钛矿的研究。 自然科学, 4, 378-383. doi: 10.12677/OJNS.2016.44046

参考文献

[1] Yang, Z.Z., Zhao, S.B., Wong, C.P. and Yan, L. (2015) Synthesis and Properties of Nano-Perovskite Mg0.5Nd0.5CoO3 by Co-Precipitation Technique. Asian Journal of Chemistry, 27, 1865-1867.
http://dx.doi.org/10.14233/ajchem.2015.18336

[2] 孙立辉. LaFeO3基氧化物对还原性气体的气敏性与机制研究[D]: [博士学位论文]. 济南: 山东大学, 2013.

[3] 周克斌. 含Pd钙钛矿型复合氧化物催化剂结构与催化性能的研究[D]: [博士学位论文]. 北京: 中国科学院研究生院, 2003.

[4] Singh, R.N. and Lai, B. (2002) High Surface Area Lanthanum Cobaltate and It’s A and B Sites Substituted Derivatives for Electrocatalysis of O2 Evolution in Alkaline Solution. International Journal of Hydrogen Energy, 27, 45-55.
http://dx.doi.org/10.1016/S0360-3199(01)00078-7

[5] Hollingworth, J., Flavell, W.R., Thomas, A.G., et al. (1999) Electronic Structure and Reactivity of La1-xSrxCo1-yCuyO3 and La1-xSrxCo1-yCuyO4. Journal of Electron Spectroscopy and Related Phenomena, 101-103, 765-769.
http://dx.doi.org/10.1016/S0368-2048(98)00364-8

[6] Lamminen, J. and Kivisaari, J. (1991) Preparation of Air Electrodes and Long Run Tests. Journal of the Electrochemical Society, 138, 905-908.
http://dx.doi.org/10.1149/1.2085745

[7] Karlsson, G. (1983) Reduction of Oxygen of LaNiO3 in Alkaline Solution. Journal of Power Sources, 10, 319-331.
http://dx.doi.org/10.1016/0378-7753(83)80014-7

[8] 张喜梅, 李琳, 郭祀远, 等. 用溶胶–凝胶法制备纳米粉体时聚集现象的探讨[J]. 化学工业与工程, 2000, 17(3): 155-159.

[9] 林纪每, 赵孟科, 陈康宁. 含镧复合氧化物的合成及其电催化性能[J]. 中国稀土学报, 1999, 17(1): 78-80.

[10] 康振晋, 孙尚梅, 王轶, 等. La1-xSrxCoO3快速溶胶–凝胶法合成[J]. 延边大学学报, 2000, 26(1): 38-40.

[11] 王秉济, 李梅君. 溶胶–凝胶法合成LaCri.xFexCb超细粉末[J]. 中国稀土学报, 1997, 15(1): 74-76.

[12] 梁新义, 秦永宁, 齐晓周, 等. 超声共沉淀法制备LaCoO3纳米微晶的研究[J]. 化学物理学报, 1998, 1(4): 375- 378.

[13] 方书农, 印洪元, 马福泰. 稀土钙钛矿型复合氧化物SmCoxFe1-xO3体系结构研究[J]. 杭州大学学报, 1999, 17(4): 493-494.

[14] 姚根有, 李延斌, 逯宝娣, 等. 共沉淀法制备超细 LaCoO3中聚乙二醇的作用研究[J]. 稀有金属, 2007, 31(2): 192-196.

分享
Top