以向日葵8号卫星观测侦测冰雪的初步实验
Primary Experiments of Detecting Snow and Ice by Using Himawari-8 Imagery

作者: 周鉴本 :“中央气象局”气象卫星中心,台湾 台北;

关键词: NDSI1.6减2.3微米反照率的差值反照率向日葵8号卫星冰雪云层NDSI Value of 1.6 minus 2.3 Micron Albedo Himawari-8 Satellite Ice/Sonw Cloud Layer

摘要: 本文以NDSI (normalized difference snow index)进行雪地与海冰的侦测,以地球同步卫星向日葵8号的0.51微米与1.6微米频道计算NDSI,当NDSI大于0.6时视为海冰或雪地。但因有些种类的云,其NDSI值亦大于0.6,主要为云顶发展至高层的冰相云顶深厚云层,为区分此类与海冰/雪地光学性质类似的云,我们采用下列测试,以分辨地面冰雪覆盖区与此类的云。第一个测试:以1.6减2.3微米反照率的差值为判断标准,因为发现1.6微米减2.3微米的差值对于冰相云顶深厚云层时小于0,而对冰雪地面覆盖区时其值大于0。第二个测试:当7.3微米减6.2微米亮度温度小于设定阈值时视为冰相云顶深厚云层。第三个测试:当10.4微米减6.2微米亮度温度小于设定阈值时视为冰相云顶深厚云层。第二与三个测试是利用冰相云顶深厚云层为发展较高的云,而7.3微米减6.2微米或10.4微米减6.2微米亮度温度的差值随云顶高度的增加而减小。实验结果与红绿蓝三色合成的日间雪–雾影像产品比对,个案实验发现目前方法提供合理的冰雪侦测结果。

Abstract: The normalized difference snow index (NDSI) has been used to detect sea ice and snow cover on the Earth. NDSI is calculated by using channel 0.51 μm and 1.6 μm on board geostationary satellite Himawari-8. The pixel is defined as ice/snow when the value of NDSI is higher than 0.6. However, the value of NDSI is higher than 0.6 for some type of cloud either. A primary type of this cloud is the thick cloud with ice top. In order to distinguish this type of cloud, following tests have been adopted to achieve this goal. First, we use the value of 1.6 μm minus 2.3 μm albedo as a parameter to distinguish between the ice/snow on Earth surface and the thick cloud with ice top because we found that the value of 1.6 μm minus 2.3 μm is positive for ice/snow on Earth’s surface and negative for thick cloud with ice top. Second, the pixel is not considered as ice/snow on Earth’s surface when the value of 7.3 μm minus 6.2 μm is smaller than a setting threshold. Third, the pixel did not define as ice/snow on surface of Earth if the value of 10.4 μm minus 6.2 μm is smaller than a setting threshold. The second and third tests are able to remove thick cloud with ice top by the fact that top of this kind cloud is higher than snow/ice on the Earth. Comparison of ice/snow map from NDSI with tests to snow-fog RGB image shows a relevant consistency between them.

文章引用: 周鉴本 (2016) 以向日葵8号卫星观测侦测冰雪的初步实验。 地球科学前沿, 6, 432-442. doi: 10.12677/AG.2016.65045

参考文献

[1] Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E. and Salomonson, V.V. (2006) Earth Science Satellite Remote Sensing: Science and Instruments. Tsinghua University Press, Beijing, 418 p.

[2] Deser, C., Walsh, J.E. and Timlin, M.S. (2000) Arctic Sea Ice Variability in the Context of Recent Atmospheric Circulation Trends. Journal of Climate, 13, 617-633.
http://dx.doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2

[3] Ulaby, F.T., Moore, R.K. and Fung, A.K. (1986) From Theory to Applications. Vol. III, Microwave Remote Sensing, Active and Passive, Addison Wesley, 1097 p.

[4] Koskinen, J.T., Pullianen, J.T. and Hallikainen, M.T. (1997) The Use of ERS-1 SAR Data in Snow Melt Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 35, 601-610.
http://dx.doi.org/10.1109/36.581975

[5] Hall, D.K., Riggs, G.A. and Salomonon, V.V. (1995) Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer (MODIS) Data. Remote Sensing of Environment, 54, 127-140.
http://dx.doi.org/10.1016/0034-4257(95)00137-P

[6] Hall, D.K., Riggs, G.A., Salomonson, V.V., Di Girolamo, N.E. and Bayr, K.J. (2002) MODIS Snow-Cover Products. Remote Sensing of Environments, 83, 181-194.
http://dx.doi.org/10.1016/S0034-4257(02)00095-0

[7] Romanov, P., Gutman, G. and Csiszar, I. (2000) Automated Monitoring of Snow Cover North America with Multispectral Satellite Data. Journal of Applied Meteorology, 39, 1866-1880.
http://dx.doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2

[8] Ackerman, S.A., Strabala, K.I., Menzel, P.W.P., Frey, R.A., Moeller, C.C. and Gumley, L.E. (1998) Discriminating Clear Sky from Cloud with MODIS. Journal of Geophysical Research, 103, 141-157.
http://dx.doi.org/10.1029/1998jd200032

[9] Klein, A.G., Hall, D.K. and Riggs, G.A. (1998) Improving Snow-Cover Mapping in Forests through the Use of Canopy Reflectance Model. Hydrological Processes, 12, 723, 774.
http://dx.doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1723::aid-hyp691>3.3.co;2-u

[10] Niilo, S. and Otto, H. (2011) New Geostationary Saellite-Based Snow-Cover Algorith. Journal of Applied Meteorological and Climatology, 50, 1275-1290. http://www.goes-r.gov/resources/Scipubs/docs/2011/2010JAMC2568.pdf

分享
Top