中国西北地区1470~2008年干湿分异的时空场分解
Analysis on Space-Time Field of Dry/Wet Change Since 1470-2008AD in Northwest China Based on REOF

作者: 何 则 , 辛惠娟 , 马 健 :中国科学院西北生态环境资源研究院冰冻圈国家重点实验室,甘肃 兰州;中国科学院大学,北京; 何元庆 :中国科学院大学,北京; 王世金 :中国科学院西北生态环境资源研究院冰冻圈国家重点实验室,甘肃 兰州; 庞 娟 :中国科学院西北生态环境资源研究院冰冻圈国家重点实验室,甘肃 兰州;中国科学院大学,北京;兰州理工大学,甘肃 兰州;

关键词: 气候干湿变化时空场西北地区近500年Dry/Wet Climate Change Space-Time Field Northwest China Last 500 Years

摘要:
基于历史文献记录,运用REOF分析方法将西北地区1470~2008 AD干湿序列分解为空间函数和时间函数,用前6个主要空间特征向量描述西北地区干湿变化的空间格局,构建区域干湿指数(RDWI),表征区域干湿变化的程度及差异。研究发现:1) 西北地区降水量分布场大致以105˚E为界呈现东湿西干的格局,湿极出现在陕南,而玉树则是旱极。2) 1470~2008年西北地区干旱年份有41年,偏干79年,正常年份有285年,偏湿年份95年,湿润年份39年。极端干旱年份有1484,1528,1586,1640,1759,1877,1878,1928,1900,1915,1929;极端湿润年份有1570,1662,1736,1745,1753,1756,1819,1884,1887,1958,1964。3) RDWI数据序列11点低通滤波表明西北地区1470~2008年干湿年代际波动变化特征极为复杂,主要存在8个干湿变化旋回。其中1481~1497,1527~1531,1583~1588,1628~1642,1713~1722,1874~1879,1915~1931年为连续干旱时段。4) 采用小波与连续功率谱分析发现西北地区1470~2008年间存在着64~90年、32~48和11~22年左右的3类周期变化规律。检测出的64年的周期以及未检测出200年的周期与已有研究不同。

Abstract: Based on the historical record, the REOF method was used to decompose the dry/wet variation in northwest China from 1470 to 2008 into spatial functions and time functions; the spatial pattern of dry/wet differences was described by the first six major space feature vectors; Regional Dry-Wet Index (RDWI) by the corresponding time weighting coefficient was used to represent the time changes of spatial differences. Several important conclusions were found in this paper. First, distribution of dry/wet variation field in northwest China was the dividing line of 105˚E. Southern Shaanxi is the wettest place and Yushu is the driest place in the west of 105˚E. Secondly, 41 years were very dry in northwest China from 1470 to 2008, and there were 79 dry years, 285 normal years, 95 wet years, and 39 very wet years. Among them, extreme dry years are in 1484, 1528, 1586, 1640, 1759, 1877, 1878, 1928, 1900, 1915 and 1929; extreme wet years are in 1570, 1662, 1736, 1745, 1753, 1756, 1819, 1884, 1887, 1958 and 1964. Thirdly, after 11-point low-pass filter, RDWI data sequence shows that dry-wet decadal fluctuations’ change characteristic is very complex, and there are eight climate change cycles. 1481-1497, 1527-1531, 1583-1588, 1628-1642, 1713-1722, 1874-1879, 1915-1931 years are the persistent dry periods. Last but not least, wavelet and power spectrum analysis shows that some periodicities existed in the last 500 years, such as the periods of around 64 - 90, 32 - 48 and 11 - 22 years. Among them, the detected 64-year periodicity and the not detected 200-year periodicity are different from the existing research.

文章引用: 何 则 , 何元庆 , 王世金 , 庞 娟 , 辛惠娟 , 马 健 (2016) 中国西北地区1470~2008年干湿分异的时空场分解。 气候变化研究快报, 5, 226-237. doi: 10.12677/CCRL.2016.54028

参考文献

[1] 丁一汇, 主编. 中国气候[M]. 北京: 科学出版社, 2013.

[2] 张德二, 刘传志, 江剑民. 中国东部6区域近1000年干湿序列的重建和气候跃变分析[J]. 第四纪研究, 1997(1): 1-11.

[3] 宋保平, 王张华, 乐群, 寇莹, 符蕴芳. 510年来中国东中部地区气候干湿变化研究[J]. 地理与地理信息科学, 2005, 21(1): 69-73.

[4] 荣艳淑, 屠其璞. 华北地区 500 年滑动平均降水场序列重建[J]. 气象科技, 2004, 32(3): 163-167.

[5] 徐新创, 葛全胜, 郑景云, 等. 湖北省近500年区域干湿序列重建及其比较分析[J]. 地理研究, 2010, 29(6): 1045- 1055.

[6] 张丕远, 葛全胜, 张时煌, 等. 2000 年来我国旱涝气候演化的阶段性和突变[J]. 第四纪研究, 1997, 17(1): 12-20.

[7] Hao, Z.X., Zheng, J.Y., Zhang, X.Z., et al. (2016) Spatial Patterns of Precipitation Anomalies in Eastern China during Centennial Cold and Warm Periods of the Past 2000 Years. International Journal of Climatology, 36, 467-475.
http://dx.doi.org/10.1002/joc.4367

[8] 薛积彬, 钟巍. 历史时期广东地区旱涝灾害与气候变化关系[J]. 地理与地理信息科学, 2005, 25(5): 75-79.

[9] 梁有叶, 张德二. 我国西部地区过去2000年降水变化研究主要进展[J]. 气象科技, 2004, 32(3): 137-142.

[10] 姚檀栋. 古里雅冰芯近2000年来气候环境变化研究[J]. 第四纪研究, 1997, 8(1): 52-61.

[11] Sheng, W.K., Yao, T.D. and Li, Y.F. (1998) Dry and Wet Changes in Guliya Ice Cap Region Approached by pH and Electric Conductivity in Ice Core. Journal of Glaciology and Geocryology, 20, 432- 437.

[12] 姚檀栋, 焦克勤, 杨学梅. 古里雅冰芯中过去400a降水变化研究[J]. 自然科学进展, 1999, 9(A12): 1161-1165.

[13] Thompson, L.G., Mosley-Thompson, E., Brecher, H., Davis, M., Leon, B., Les, D., et al. (2006) Abrupt Tropical Climate Change: Past and Present. Proceedings of the National Academy of Sciences of the United States of America, 103, 10536-10543.
http://dx.doi.org/10.1073/pnas.0603900103

[14] Yang, B., Kang, S., Ljungqvist, F.C., He, M., Zhao, Y. and Qin, C. (2014) Drought Variability at the Northern Fringe of the Asian Summer Monsoon Region over the Past Millennia. Climate Dynamics, 43, 845-859.
http://dx.doi.org/10.1007/s00382-013-1962-y

[15] 勾晓华, 陈发虎, 王亚军, 等. 利用树轮宽度重建近280a来祁连山东部地区的春季降水[J]. 冰川冻土, 2001, 23(3): 292-296.

[16] Kang, S., Bräuning, A. and Ge, H. (2014) Tree-Ring Based Evidence of the Multi-Decadal Climatic Oscillation during the Past 200 Years in North-Central China. Journal of Arid Environments, 110, 53-59.
http://dx.doi.org/10.1016/j.jaridenv.2014.06.003

[17] 吴敬禄, 李世杰, 王苏民, 等. 若尔盖盆地兴措湖沉积记录揭示的近代气候与环境[J]. 湖泊科学, 2000, 12(4): 291-297.

[18] 吴敬禄, Schleser, G.H., 王苏民, 等. 青藏高原东部兴措湖近0.2ka来的气候定量复原[J]. 中国科学(D辑), 2001, 31(12): 1024-1030.

[19] 张恩楼, 沈吉, 王苏民, 等. 青海湖近900年来气候环境演化的湖泊沉积记录[J]. 湖泊科学, 2002, 14(1): 32-38.

[20] Chen, J., Chen, F., Zhang, E., Brooks, S.J., Zhou, A. and Zhang, J. (2009) A 1000-Year Chironomid-Based Salinity Reconstruction from Varved Sediments of Sugan Lake, Qaidam Basin, Arid Northwest China, and Its Palaeoclimatic Significance. Chinese Science Bulletin, 54, 3749-3759.
http://dx.doi.org/10.1007/s11434-009-0201-8

[21] 钟巍, 熊黑钢, 塔西甫拉提, 等. 南疆地区历史时期气候与环境演化[J]. 地理学报, 2001, 56(3): 345-352.

[22] 李红春, 顾德隆, Paulsen, D., 等. 陕南石笋稳定同位素记录中的古气候和古季风信息[J]. 地震地质, 2000, 22(s1): 63-78.

[23] Tan, L., Cai, Y., An, Z., Edwards, R.L., Cheng, H., Shen, C.C., et al. (2011) Centennial-to Decadal-Scalemonsoon Precipitation Variability in the Semi-Humid Region, Northern China during the Last 1860 Years: Records from Stalagmites in Huangye Cave. The Holocene, 21, 287-296.
http://dx.doi.org/10.1177/0959683610378880

[24] 中央气象局气象科学研究院. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社, 1981.

[25] 白虎志, 董安祥, 郑广芬, 等. 中国西北地区近500年旱涝分布图集: 1470-2008 [M]. 北京: 气象出版社, 2010.

[26] 王绍武, 赵宗慈. 近五百年我国旱涝史料的分析[J]. 地理学报, 1979, 34(4): 329-341.

[27] 邓爱军, 陶诗言, 陈烈庭. 我国汛期降水的EOF分析[J]. 大气科学, 1989, 13(3): 289-294.

[28] 孙林海, 赵振国, 许力, 等. 中国东部季风区夏季雨型的划分及其环流成因分析[J]. 应用气象学报, 2005, 16(s1): 56-62.

[29] Zhang, X.S., Wu, K.J., Wang, B., et al. (2013) The Low-Frequency Variance of the Ocean Surface Wave Field in the Area of the Antarctic Circumpolar Current. Acta Oceanologica Sinica, 32, 15-21.
http://dx.doi.org/10.1007/s13131-013-0309-1

[30] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2003: 105-113.

[31] Schneider, T. (2001) Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. American Meteorological Society, 14, 853-871.
http://dx.doi.org/10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2

[32] Hammer, O., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 1-9.

[33] 刘洪滨, 邵雪梅, 黄磊. 中国陕西关中及周边地区近500年来初夏干燥指数序列的重建[J]. 第四纪研究, 2002, 22(3): 220-229.

[34] 王振宇, 李林, 汪青春, 等. 树轮记录的500年来青海地区夏半年降水变化特征[J]. 气候与环境研究, 2005, 10(2): 250-256.

[35] 姚檀栋, 秦大河, 田立德, 等. 青藏高原2Ka来温度与降水变化——古里雅冰芯记录[J]. 中国科学(D辑), 1996, 26(4): 348-353.

[36] 邵雪梅, 梁尔源, 黄磊. 柴达木盆地东北部过去1437a的降水变化重建[J]. 气候变化研究进展, 2006, 2(3): 122- 126.

[37] 冯松, 汤懋苍, 周陆生. 青海湖近600年的水位变化[J]. 湖泊科学, 2000, 12(3): 205-210.

分享
Top