推理规则链的确定性构建
Creating a Reasoning Chain Determinately

作者: 张亦舜 :浙江工商大学计算机与信息工程学院,浙江 杭州;

关键词: 专家系统推理规则逻辑代数质蕴含Expert System Reasoning Production Rule Logic Algebra Prime Implication

摘要: 推理是人工智能领域研究的重点。推理过程一般是非确定的,会产生许多冗余的推理分支。本文针对专家系统中常用的产生式规则,提出了一种确定性构造推理链的方法。方法运用逻辑代数理论,首先确立了规则集与逻辑函数的对应关系,证明推理规则链中的所有规则对应构成逻辑函数质蕴含集中的一个特定最小子集,给出了确定该子集的基本算法。子集中质蕴含对应的规则按逻辑顺序排列即构成了一条合理的推理规则链。

Abstract: Reasoning is a research focus of artificial intelligence. Uncertainty in reasoning process generally produces many redundant reasoning branches. Based on production rule commonly used in expert system, this paper proposes a method to build the reasoning chain determinately. The method uses the theory of logic algebra. First we establish correspondence between a set of production rules and a logical function, and then prove that rules in a reasoning chain corresponding to a special minimal subset of the prime implication set that consists of the logical function, finally give out the basic algorithm to determine the subset. A sound reasoning chain is formed by arranging rules corresponding to prime implications in subset according to the logical order.

文章引用: 张亦舜 (2016) 推理规则链的确定性构建。 计算机科学与应用, 6, 545-550. doi: 10.12677/CSA.2016.69068

参考文献

[1] 王永庆. 人工智能原理与方法[M]. 西安: 西安交通大学出版社, 1998.

[2] 宋光雄, 何永勇, 褚福磊. 基于双参数方法的故障诊断不确定性推理问题[J]. 清华大学学报, 2006, 46(8): 1397-1400.

[3] 王永县, 朱涛, 李飞. 基于相似关系的广义近似推理方法[J]. 清华大学学报, 2002, 42(10): 1285-1288.

[4] 陈晨, 周勇. 一种基于置信规则的模糊推理算法[J]. 电子科技, 2013, 26(4): 82-85.

[5] Yeung, D.S., Wang, X.Z. and Tsang, E.C. (2004) Handling Interaction in Fuzzy Production Rule Reasoning. IEEE Transactions on Systems, Man, & Cybernetics. Part B: Cyber-netics, 34, 1979-1987.

[6] 崔奇明. 基于WEB的非精确正向推理专家系统的研究与应用[J]. 电脑与信息技术, 2006, 14(3):46-49.

[7] 孙臣良, 孙福玉, 梁宏友. 基于规则的非精确反向推理专家系统[J]. 辽宁工程技术大学学报, 2003, 22(s1): 145-147.

[8] 陈光梦. 数字逻辑基础[M]. 上海: 复旦大学出版社, 2007.

分享
Top