规则集的化简及相关性质的判定
Simplifing Set of Rules and Judging Relative Properties

作者: 张亦舜 :浙江工商大学计算机与信息工程学院,浙江 杭州;

关键词: 专家系统产生式规则逻辑代数质蕴含Expert System Production Rule Logic Algebra Prime Implication

摘要: 任给一个规则集,确定其等价的最简规则集,此理论问题的解决对实际构建专家系统的核心组成部分规则库有重要意义。本文运用逻辑代数的基本理论和方法,将给定规则集对应于一个逻辑函数,化简得到最简逻辑函数,其对应所求的最简规则集,其中每条规则具有独立性。通过查找化简过程保留的所有质蕴含中的特定项,还能直接判断规则集的完备性和矛盾性。这种方法无需利用规则进行推理,可以统一运用于检测规则库的其它多种问题。
Determining an equivalent minimal form for a given set of rules is important to build a rule base that consists of the key part of an expert system. Using logic algebra for solving the problem, this paper first transforms the given set of rules into a logic function, then simplifies the logic function by the means of logic algebra and finally convert the result function into a desired simplest set of rules in which each rule is independent. Through looking up special items in all prime implicates obtained in the above procedure, the completeness and contradictoriness of a set of rules can be judged out directly. This method can also be used to detect other problems in rule base without rule-based reasoning.

文章引用: 张亦舜 (2016) 规则集的化简及相关性质的判定。 计算机科学与应用, 6, 539-544. doi: 10.12677/CSA.2016.69067

参考文献

[1] 陈世福, 潘金贵, 徐殿祥. 产生式知识库一致性和冗余性检查[J]. 计算机学报, 1992, 15(9): 670-675.

[2] 刘书家, 孙名松. 知识库维护技术的研究[J]. 哈尔滨理工大学学报, 1997(1): 33-36.

[3] 应晶, 吴朝晖. 知识库的一致性问题和检查方法[J]. 计算机科学, 1991(2): 63-67.

[4] 宗成庆, 陈肇雄, 黄河燕. 规则库冗余性控制策略的研究[J]. 软件学报, 1997, 8(1): 1-6.

[5] 孙运传, 别荣芳. 产生式规则库的求精研究[J]. 北京师范大学学报(自然科学版), 2003, 39(4): 435-443.

[6] Knauf, R., Philippow, I. and Gonzalez, A.J. (2000) Towards Validation and Refinement of Rule-Based Systems. Journal of Experimental & Theoretical Artificial Intelligence, 12, 421-431.
http://dx.doi.org/10.1080/095281300454801

[7] 王永庆. 人工智能原理与方法[M]. 西安: 西安交通大学出版社, 1998.

[8] 栾尚敏, 戴国忠. 命题规则知识库更新的一种代数方法[J]. 中国科学E辑: 信息科学, 2008, 38(2): 177-194.

[9] 姜浩, 罗军舟, 方宁生. 一种基于有色Petri 网的知识库验证方法[J]. 东南大学学报, 2000, 30(1): 77-83.

[10] Ramaswamy, M., Sarkar, S. and Chen, Y.-S. (1997) Using Directed Hypergraphs to Verify Rule-Based Expert Systems. IEEE Transactions on Knowledge and Data Engineering, 9, 221-237.
http://dx.doi.org/10.1109/69.591448

[11] 孙伟, 郭莉, 高天一, 等. 一种基于有向超图的规则库冗余及环路检测方法[J]. 大连理工大学学报, 2008, 48(1): 74-78.

[12] 陈光梦. 数字逻辑基础[M]. 上海: 复旦大学出版社, 2007.

[13] 左孝凌. 离散数学[M]. 上海: 上海科学技术文献出版社, 1982: 2-80.

分享
Top