拟线性p-调和型椭圆方程的梯度估计
Gradient Estimates for Quasilinear Elliptic p-Laplacean Equations

作者: 王墨琴 :上海大学理学院,上海;

关键词: p-调和型拟线性椭圆Wolff位势梯度估计p-Laplacean Quasilinear Elliptic Wolff Potential Gradient Estimate

摘要:
本文我们利用非线性Wolff位势来研究右端项含测度的非齐次拟线性p-调和型椭圆方程弱解的点态梯度估计。

Abstract: In this paper we obtain the pointwise gradient estimates via the non-linear Wolff potentials for weak solutions of the non-homogeneous quasilinear elliptic p-Laplacean equations with measure data.

文章引用: 王墨琴 (2016) 拟线性p-调和型椭圆方程的梯度估计。 理论数学, 6, 441-448. doi: 10.12677/PM.2016.65060

参考文献

[1] Hedberg, L. and Wolff, T. (1983) Thin Sets in Nonlinear Potential Theory. Annales de l’institut. Fourier, 33, 161-187. http://dx.doi.org/10.5802/aif.944

[2] Kilpeläinen, T. and Malý, J. (1992) Degenerate Elliptic Equations with Measure Data and Nonlinear Potentials. Annali della Scuola Normale Superiore di Pisa Classe di Scienze (IV), 19, 591-613.

[3] Kilpeläinen, T. and Malý, J. (1994) The Wiener Test and Potential Estimates for Quasilinear Elliptic Equations. Acta Mathematica, 172, 137-161. http://dx.doi.org/10.1007/BF02392793

[4] Trudinger, N. and Wang, X. (2002) On the Weak Continuity of Elliptic Operators and Applications to Potential Theory. American Journal of Mathematics, 124, 369-410. http://dx.doi.org/10.1353/ajm.2002.0012

[5] Korte, R. and Kuusi, T. (2010) A Note on the Wolff Potential Estimate for Solutions to Elliptic Equations Involving Measures. Advances in Calculus of Variations, 3, 99-113. http://dx.doi.org/10.1515/acv.2010.005

[6] Duzaar, F. and Mingione, G. (2011) Gradient Estimates via Non-Linear Potentials. American Journal of Mathematics, 133, 1093-1149. http://dx.doi.org/10.1353/ajm.2011.0023

[7] Duzaar, F. and Mingione, G. (2010) Gradient Estimates via Linear and Nonlinear Potentials. Journal of Functional Analysis, 259, 2961-2998. http://dx.doi.org/10.1016/j.jfa.2010.08.006

[8] Mingione, G. (2011) Gradient Potential Estimates. Journal of the European Mathematical Society, 13, 459-486. http://dx.doi.org/10.4171/jems/258

[9] Kuusi, T. and Mingione, G. (2013) Linear Potentials in Nonlinear Potential Theory. Archive for Rational Mechanics and Analysis, 207, 215-246. http://dx.doi.org/10.1007/s00205-012-0562-z

[10] Lieberman, M. (1991) The Natural Generalization of the Natural Conditions of Ladyzhenskaya and Urall’tseva for Elliptic Equations. Communications in Partial Differential Equations, 16, 311-361. http://dx.doi.org/10.1080/03605309108820761

[11] Fan, X. (2007) Global C^(1,α) Regularity for Variable Exponent Elliptic Equations in Divergence Form. Journal of Differential Equations, 235, 397-417. http://dx.doi.org/10.1016/j.jde.2007.01.008

[12] Kinnunen, J. and Zhou, S. (1999) A Local Estimate for Nonlinear Equations with Discontinuous Coefficients. Communications in Partial Differential Equations, 24, 2043-2068. http://dx.doi.org/10.1080/03605309908821494

[13] DiBenedetto, E. and Manfredi, J. (1993) On the Higher Integrability of the Gradient of Weak Solutions of Certain Degenerate Elliptic Systems. American Journal of Mathematics, 115, 1107-1134. http://dx.doi.org/10.2307/2375066

[14] Manfredi, J. (1984) Regularity for Minima of Functionals with p-Growth. Journal of Differential Equations, 76, 203- 212. http://dx.doi.org/10.1016/0022-0396(88)90070-8

[15] Boccardo, L. and Gallouët, T. (1989) Nonlinear Elliptic and Parabolic Equations Involving Measure Data. Journal of Functional Analysis, 87, 149-169. http://dx.doi.org/10.1016/0022-1236(89)90005-0

[16] Boccardo, L. and Gallouët, T. (1992) Nonlinear Elliptic Equations with Right-Hand Side Measures. Communications in Partial Differential Equations, 17, 641-655. http://dx.doi.org/10.1080/03605309208820857

[17] Mingione, G. (2007) The Calderón-Zygmund Theory for Elliptic Problems with Measure Data. Annali della Scuola Normale Superiore di Pisa Classe di Scienze (V), 6, 195-261.

分享
Top