有限生成无挠幂零群的4阶自同构
Finitely Generated Torsion-Free Nilpotent Groups Admitting an Automorphism of Order Four
作者: 马 晓迪 :南京理工大学计算机科学与工程学院,江苏 南京; 徐 涛 :河北工程大学理学院,河北 邯郸;
关键词: 有限生成; 无挠幂零群; 正则自同构; 自同构; Finitely Generated; Torsion-Free Nilpotent Group; Regular Automorphism; Automorphism
摘要:
Abstract: Let G be a finitely generated torsion-free nilpotent group and α an automorphism of order four of G. If the map G→G defined by

文章引用: 马 晓迪 , 徐 涛 (2016) 有限生成无挠幂零群的4阶自同构。 理论数学, 6, 437-440. doi: 10.12677/PM.2016.65059
参考文献
[1] Robinson, D.J.S. (1996) A Course in the Theory of Groups. 2nd Edition, Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4419-8594-1
[2] Burnside, W. (1955) Theory of Groups of Finite Order. 2nd Edition, Dover Publications Inc., New York.
[3] Gorenstein, D. (1980) Finite Groups. Chelsea Publishing Company, New York.
[4] Neumann, B.H. (1956) Group with Automorphisms That Leave Only the Neutral Element Fixed. Archiv der Mathematik, 7, 1-5. http://dx.doi.org/10.1007/BF01900516
[5] Thompson, J. (1959) Finite Groups with Fixed-Point-Free Automorphisms of Prime Order. Proc. Nat. Acad. Sci., 45: 578-581. http://dx.doi.org/10.1073/pnas.45.4.578
[6] Higman, G. (1957) Groups and Rings Having Automorphisms without Non-Trivial Fixed Elements. Journal of the London Mathematical Society, 64, 321-334. http://dx.doi.org/10.1112/jlms/s1-32.3.321
[7] 徐涛, 刘合国. 有限秩的可解群的正则自同构[J]. 数学年刊, 2014, 35A(5): 543-550.
[8] Xu, T. and Liu, H.G. (2016) Finitely Generated Torsion-Free Nilpotent Groups Admitting an Automorphism of Prime Order. Communications in Mathematical Sciences, 32, 167-172.
[9] Kovács, L.G. (1961) Group with Regular Automorphisms of Order Four. Mathematische Zeitschrift, 75, 277-294. http://dx.doi.org/10.1007/BF01211026