玻璃纤维负载金属锰催化剂的合成及其催化氧化苯乙烯反应性能
Preparation of Fiber-Supported Mn(II) Complex and Their Catalytic Performance in Oxidation of Styrene

作者: 闫姗姗 , 吴 政 :北京服装学院,北京;

关键词: 玻璃纤维醋酸锰催化苯乙烯氧化反应Glass Fiber Manganese(II) Catalytic Styrene Oxidation

摘要:
本论文制备了一种新型负载催化剂,GF-SALEN-Mn(II),它以玻璃纤维为载体,纤维表面羟基化后,经过3-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPTS)处理,在纤维表面形成硅烷分子层,经过几步反应负载上含有SALEN结构的配合物,用甲醇做溶剂配合上金属离子锰,制备成GF-SALEN-Mn(II)催化剂,并用红外光谱(IR)及核磁(HNMR)进行表征。以H2O2为氧化剂,考察了GF-SALEN-Mn(II)配合物对苯乙烯氧化反应的催化性能。探究了反应温度,氧化剂用量等条件对催化活性的影响,并考察了纤维固载金属催化剂的循环使用性能。实验结果表明,催化剂有很高的催化活性且苯乙烯的转化率可达84%。最佳反应条件为:温度为70℃,反应时间为10时,氧化剂H2O2的量为底物苯乙烯的五倍摩尔量,催化剂可以循环使用3次仍有较好的催化活性。

Abstract: The goal of this paper is to prepare a new type of supported catalyst, GF-SALEN-Mn(II), which is synthesized by the following. The glass fibers were first hydroxylated, after which they were reacted with 3-glycidoxypropyltrimethoxysilane (GPTS) to form a silane monolayer, which was further reacted with synthetic salen ligand on subsequent treatment with Mn(OAc)2 in methanol and gave a glass fiber-supported N,N-bis-(saliylalehydde)-ethylendiamine manganese(II) complex [GF- SALEN-Mn(II)]. It was characterized by physicochemical techniques (FT-IR, HMNR). The catalyst was used in the oxidation of styrene with H2O2 as the oxidant. The important reaction conditions, such as the reaction temperature, the ratio of oxidant/styrene, and the recycle times were examined. The experimental results show that the catalyst reveals relatively high catalytic performance with 84% conversion for styrene. The suitable conditions are as follows: n(styrene): n(H2O2) = 1:5; the reaction temperature: 70˚C and the reaction time: 10 h. In addition, the catalyst used repeatedly for 3 times can still possess high catalytic activity.

文章引用: 闫姗姗 , 吴 政 (2016) 玻璃纤维负载金属锰催化剂的合成及其催化氧化苯乙烯反应性能。 材料科学, 6, 308-314. doi: 10.12677/MS.2016.65040

参考文献

[1] 孟欢, 张学俊. 高分子负载催化剂的应用研究进展[J]. 化学推进剂与高分子材料, 2010, 6(42): 45-62.

[2] 屈育龙, 胡道道. 高分子负载金属络合物催化烯烃对映选择环氧化的研究[J]. 高分子通报, 2005(1): 31-37.

[3] 臧杰超. 新型Salen类配合物的制备与表征[D]: [硕士学位论文]. 河北: 河北大学, 2009.

[4] 刘晓林. Salen-过渡金属配合物的合成及其与DNA相互作用的研究[D]: [硕士学位论文]. 湖南: 湖南科技大学, 2010.

[5] Esposito, M., Collecchi, P., Brera, S., et al. (1986) Plasma and Tissue Levels of Some Lanthanide Elements in Malignant and Non-Malignant Human Tissues. Science of the Total Environment, 50, 55-63.
http://dx.doi.org/10.1016/0048-9697(86)90351-7

[6] 刘树祥, 刘春丽, 田来进. 锌(Ⅱ)-氨基酸水杨醛席夫碱-α-氨基酸三元配合物的稳定性[J]. 无机化学学报, 1999(1): 118-121.

[7] Hodnett, E.M. and Dunn, W.J. (1970) Structure-Antitumor Activity Correlation of Some Schiff Bases. Journal of Medicinal Chemistry, 13, 768-770.
http://dx.doi.org/10.1021/jm00298a054

[8] Katsuki, T. (1996) Mn-Salen Catalyst, Competitor of Enzymes, for Asymmetric Epoxidation. Journal of Molecular Catalysis A Chemical, 113, 87-107.
http://dx.doi.org/10.1016/S1381-1169(96)00106-9

[9] Liu, Z., Fu, X., Hu, X., et al. (2012) Asymmetric Epoxidation of Un-factionalized Olefins Catalyzed by Chiral Salen Mn(III) Immobilized onto Sulfoalkyl Modified Zirconium Poly(Styrene-Isopropenyl Phosphonate)-Phosphate and Zirconium Poly(Styrene-Phenylvinyl Phosphonate)-Phosphate. Journal of Organometallic Chemistry, 713, 157-162.
http://dx.doi.org/10.1016/j.jorganchem.2012.05.002

分享
Top