Wronsky行列式与具有最大亏量和的亚纯函数
Wronsky Determinant and Meromorphic Functions with Maximal Deficiency Sum

作者: 谢 佳 * , 邓炳茂 , 李 菁 :华南农业大学应用数学研究所,广东 广州;

关键词: 亚纯函数最大亏量和Wronsky行列式Meromorphic Function Maximal Deficiency Sum Wronsky Determinant

摘要:

f是复平面上满足 的超级有穷的超越亚纯函数, k为正整数, fk+1 个线性独立的小函数,且满足 为常数, ,则有

Let f be a transcendental meromorphic function satisfying , and k is a positive integer; let be linearly independent small functions of f  , and is a constant; let . Then

文章引用: 谢 佳 , 邓炳茂 , 李 菁 (2016) Wronsky行列式与具有最大亏量和的亚纯函数。 理论数学, 6, 418-426. doi: 10.12677/PM.2016.65057

参考文献

[1] Yang, L. (1993) Value Distribution Theory. Springer-Verlag, Berlin.

[2] Hayman, W.K. (1964) Meromorphic Functions. Clarendon Press, Oxford.

[3] Yang, L. (1990) Precise Estimate of Total Deficiency of Meromorphic Derivatives. Journal d’Analyse Mathematique, 55, 287-296. http://dx.doi.org/10.1007/BF02789206

[4] 仇惠玲, 曾翠萍, 方明亮. 导函数具有最大亏量和的杨乐问题[J]. 中国科学: 数学, 2013, 43(12): 1177-1184.

[5] Singh, S.K. and Kulkarni, V.N. (1973) Characteristic Function of a Meromorphic Function and Its Derivatives. Annales Polonici Mathematici, 28, 123-133.

[6] Fang, M.L. (2000) A Note on a Result of Singh and Kulkarni. International Journal of Mathematics and Mathematical Sciences, 23, 285-288. http://dx.doi.org/10.1155/S016117120000082X

[7] Frank, G. and Weissenborn, G. (1989) On the Zeros of Linear Differential Polynomials of Meromorphic Functions. Complex Variables, Theory and Application, 12, 77-81. http://dx.doi.org/10.1080/17476938908814355

[8] Lahiri, I. and Banerjee, A. (2004) Value Distribution of a Wronskian. Portugaliae Mathematica (Nova Série), 61, 161- 175.

分享
Top