高性能无源光电子材料与器件研究
Research on High-Performance Passive Optoelectronic Materials and Devices

作者: 吴远大 :河南仕佳光子科技股份有限公司,河南 鹤壁; 王 玥 , 李智勇 , 黄北举 , 张家顺 , 张 磊 :中国科学院半导体研究所,北京; 江 毅 :武汉光迅科技股份有限公司,湖北 武汉; 陈 沁 :中国科学院苏州纳米技术与纳米仿生研究所,江苏 苏州;

关键词: 可调谐滤波器高速调制器光交叉连接器无源合波器光栅耦合器温控滤波器Tunable Filter High-Speed Modulator Optical Cross Connector Passive Multiplexer Grating Coupler Temperature-Control Filter

摘要:
面向我国互联网+、云计算数据中心及超级计算机建设中战略性高性能无源光电子材料与器件的迫切需求,本文提出要以掌握自主知识产权的新型硅基无源材料及器件为目标,以复杂多功能集成芯片技术为牵引,着力解决低损耗、跨周期大范围波长可调谐滤波器设计与材料制备;电光复合波导中锗硅异质外延材料双效应互耦合增强机理,极高速率调制器电光转换效率、能耗;多功能集成多层光交叉连接器顶层波导低温沉积技术、多层光波导高效耦合和隔离设计及制备;硅基超小型、低损耗、热不敏感无源合波器原理、工艺及产业化;光栅耦合器、滤波器和微电子器件的融合,片上温控及波长自动锁定算法及实现等关键技术。通过技术攻关,有望突破一批硅基光电子核心芯片关键技术,对信息产业发展和国家安全保障提供有效地支撑,服务于国家在智能化信息技术、先进半导体制造技术、新一代大规模集成电路等方面的战略需求。

Abstract: Geared to the urgent needs of strategic high-performance passive optoelectronic materials and devices in the constructions of China’s Internet+, cloud computing data center and super computer, the paper proposes that it needs to take mastering novel Si-based passive optoelectronic materials and devices with independent intellectual property rights as the goal, and take complex multi- function integrated chip technology as the traction, and strive to solve the key technologies, such as the design and fabrication of low-loss cross-cycle large-range wavelength tunable filter and ma- terial, double-effect mutual-coupling enhancement mechanism of SiGe heteroepitaxy material in the electro-optic composite waveguide, electro-optic conversion efficiency and energy consumption of ultral-high-speed modulator, low-temperature deposition technology of top-layer waveguide in multi-function integrated multilayer optical cross connector, design and fabrication of high-effi- ciency coupling and isolation of multilayer optical waveguide, principle, technology and industrialization of Si-based ultral-small low-loss thermal-insensitive passive multiplexer, the integration of grating coupler, filter, and microelectronic device, and the realizations of temperature-control- on-chip and wavelength automatic locking algorithm. Through the technical research, it is expected to make breakthrough in key technologies of a batch of Si-based optoelectronic core chips, provide effective support to the development of information industry and the national security, and serve national strategic requirements of intelligent information technology, advanced semiconductor manufacturing technology, and new generation large-scale integrated circuit.

文章引用: 吴远大 , 王 玥 , 李智勇 , 江 毅 , 黄北举 , 陈 沁 , 张家顺 , 张 磊 (2016) 高性能无源光电子材料与器件研究。 光电子, 6, 126-129. doi: 10.12677/OE.2016.63018

参考文献

[1] Errando-Herranz, C., Niklaus, F., Stemme, G. and Gylfason, K.B. (2015) A MEMS Tunable Photonic Ring Resonator with Small Footprint and Large Free Spectral Range. 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, 1001-1004.

[2] Palmer, R., Alloatti, L., Korn, D., et al. (2013) Low Power Mach-Zehnder Modulator in Silicon-Organic Hybrid Tech- nology. IEEE Photonics Technology Letters, 25, 1226-1229. http://dx.doi.org/10.1109/LPT.2013.2260858

[3] Jones, A.M., DeRose, C.T., Lentine, A.L., Trotter, D.C., Starbuck, A.L. and Norwood, R.A. (2013) Ultra-Low Crosstalk, CMOS Compatible Waveguide Crossings for Densely Integrated Photonic Interconnection Networks. Optics Express, 21, 12002-12013. http://dx.doi.org/10.1364/OE.21.012002

[4] Huang, Y., Tu, X.G., Lim, A.E.-J., Song, J.F., Liow, T.-Y. and Lo, G.-Q. (2015) Ultra-Low Loss CMOS Compatible Multi-Layer Si3N4-on-SOI Platform for 1310nm Wavelength. OFC, Paper W4A.5.

[5] Ben Yoo, S.J. (2016) 2D and 3D Heterogeneous Photonic Integrated Circuits. OFC, Paper Th1C.5.

[6] Shang, K.P., Pathak, S., Liu, G.Y. and Yoo, S.J.B. (2015) Ultra-Low Loss Vertical Optical Couplers for 3D Photonic Integrated Circuits. OFC, Paper Th1F.6.

[7] Yang, Y., Hu, X.N., Song, J.F., Fang, Q., Yu, M.B., Tu, X.G. and Lo, G.-Q. (2015) Thermo-Optically Tunable Silicon AWG with Above 600 GHz Channel Tunability. IEEE Photonics Technology Letters, 27, 2351-2354. http://dx.doi.org/10.1109/LPT.2015.2464073

[8] Li, C., Zhang, H., Yu, M. and Lo, G. (2013) CMOS-Compatible High Efficiency Double-Etched Apodized Waveguide Grating Coupler. Optics Express, 21, 21588-21594. http://dx.doi.org/10.1364/OE.21.007868

[9] Shi, R.Z., Guan, H., Novack, A., Streshinsky, M., Lim, A.E.-J., Lo, G.-Q., Baehr-Jones, T. and Hochberg, M. (2014) High-Efficiency Grating Couplers Near 1310 nm Fabricated by 248-nm DUV Lithography. IEEE Photonics Technology Letters, 26, 1569-1572. http://dx.doi.org/10.1109/LPT.2014.2329326

[10] Li, Y. and Poon, A.W. (2015) Active Resonance Wavelength Stabilization for Silicon Microring Resonators with an In-Resonator Defect-State-Absorption-Based Photodetector. Optics Express, 23, 360-372. http://dx.doi.org/10.1364/OE.23.000360

[11] Zhang, Z., Huang, B.J., Zhang, X., Zhang, Z.Y., Cheng, C.T., Mao, X.R., Liu, S.J. and Chen, H.D. (2015) Monolithic Integration of Si3N4 Microring Filters with Bulk CMOS IC through Post-Backend Process. IEEE Photonics Technology Letters, 27, 1543-1546. http://dx.doi.org/10.1109/LPT.2015.2429677

分享
Top