耦合太阳能的压缩空气储能系统特性分析
Characteristics Analysis of Compressed Air Energy Storage System Coupled with the Solar Energy

作者: 梁丹曦 , 宋 洁 :全球能源互联网研究院,北京; 段立强 * , 陆 浩 , 谢 坤 , 马敬凯 , 吕志鹏 , 袁明野 :华北电力大学能源动力与机械工程学院,北京;

关键词: 太阳能压缩空气储能系统热力特性Solar Energy Compressed Air Energy Storage System Thermal Characteristics

摘要:
利用压缩空气储能系统可有效消纳太阳能的废弃能量,提高电网的电能利用率。同时,压缩空气储能系统可解决太阳能自身的不稳定性和间歇性。所以有必要利用压缩空气储能系统的特点对太阳能热进行更合理的利用。本文针对耦合太阳能的压缩空气储能系统开展研究,分析了系统的热力特性。研究了恒压和恒容两种运行条件下在不同太阳能输入热量、透平入口压力等关键参数变化时对系统性能影响规律,结果表明,恒压储气罐运行条件下系统具有更明显性能优势。

Abstract: The utilization of compressed air energy storage system can effectively recover the discarded solar energy and improve the power utilization rate of the power grid. At the same time, the compressed air energy storage system can solve the instability and intermittent problems of solar energy. So it is necessary to make a more reasonable use of solar energy on the base of the characteristics of compressed air energy storage system. This paper studies the thermal characteristics of the compressed air energy storage system integrated with the solar energy and the effects of the key parameters such as the inputted solar energy amount and turbine inlet pressure on the system performances of two kinds of operation situations with the constant stored air pressure and the constant stored air tank volume. The results show that the compressed air energy storage system under the operation situation with the constant stored air pressure has better performances than the compressed air energy storage system under the operation situation with the constant stored air tank volume.

文章引用: 梁丹曦 , 宋 洁 , 段立强 , 陆 浩 , 谢 坤 , 马敬凯 , 吕志鹏 , 袁明野 (2016) 耦合太阳能的压缩空气储能系统特性分析。 可持续能源, 6, 69-78. doi: 10.12677/SE.2016.64008

参考文献

[1] 杜祥琬. 中国可再生能源发展战略研究丛书[M]. 综合卷. 北京: 中国电力出版社, 2008, 11-32.

[2] 李琼慧. 太阳能光热发电发展现状与市场前景[J]. 电器工业, 2011(8): 28-31.

[3] McLarnon, F.R. and Cairns, E.J. (1989) Energy Storage. Annual Review of Energy, 14, 241-271.
http://dx.doi.org/10.1146/annurev.eg.14.110189.001325

[4] Chen, H., Cong, T.N., Yang, W., et al. (2009) Progress in Electrical Energy Storage System: A Critical Review. Progress in Natural Science, 19, 291-312.
http://dx.doi.org/10.1016/j.pnsc.2008.07.014

[5] Ribeiro, P.F., Johnson, B.K., Crow, M.L., et al. (2001) Energy Storage Systems for Advanced Power Applications. Proceedings of the IEEE, 89, 1744-1756.
http://dx.doi.org/10.1109/5.975900

[6] Lund, P. and Paatero, J. (2006) Energy Storage Option for Improving Wind Power Quality. Proceedings of the 3rd Nordic Wind Power Conference, Espoo, 22-23 May 2006, 7 p.

[7] Succar, S. and Williams, R.H. (2008) Compressed Air Energy Storage: Theory, Resources, and Applications for Wind Power. PEI, 1-81.

[8] 张新敬, 陈海生, 刘金超等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.

[9] Crotogino, F., Mohmeyer, K.U. and Scharf, R. (2001) Huntorf CAES: More than 20 Years of Successful Operation. Spring 2001 Meeting, Orlando, 15-18 April 2001, 6 p.

[10] 张远, 杨科, 李雪梅, 徐建中. 先进绝热压缩空气蓄能的冷热电输出特性研究[J]. 热能动力工程, 2013, 8(2): 134- 138.

[11] 骆妮, 李建林. 储能技术在电力系统中的研究进展[J]. 电网与清洁能源, 2012, 28(2): 71-79.

[12] Bullough, C., Gatzen, C., Jakiel, C., et al. (2004) Advanced Adiabatic Compressed Air Energy Storage for the Integration of Wind Energy. European Wind Energy Conference, London, 22-25 November 2004, 8 p.

[13] Ibrahim, H., Younès, R., Ilinca, A., et al. (2010) Study and Design of a Hybrid Wind-Diesel-Compressed Air Energy Storage System for Remote Areas. Applied Energy, 87, 1749-1762.
http://dx.doi.org/10.1016/j.apenergy.2009.10.017

[14] 杨敏林, 杨晓西, 林汝谋等. 太阳能热发电技术与系统[J]. 热能动力工程, 2008, 23(3): 221-228.

[15] 徐玉杰, 陈海生, 刘佳, 谭春青. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012(20): 88-95.

分享
Top