﻿ 基于两步Kalman滤波的GNSS分布式自主定轨方法

# 基于两步Kalman滤波的GNSS分布式自主定轨方法An Autonomous Orbit Determination Method for Distributed GNSS Based on Two-Step Kalman Filter

Abstract: This article presents an autonomous orbit determination method for distributed GNSS based on two-step Kalman filter. Firstly, the paper gives the distributed autonomous orbit data process, and then builds the bidirectional pseudo-range measurement model for ISLs of GNSS navigation constellation. Secondly, the single point positioning method is adopted to obtain the position and covariance of satellite, which are the pseudo-observations to calculate the orbit correction parameters by the two-step Kalman filter. According to the problem of rank deficiency of autonomous orbit determination problem, the paper gets rid of the unobservable rotation of constellation by constraining orientation of prediction orbit, and then gives the best estimated value of the satellite orbit. The simulation and analysis results illustrate the availability of the scheme.

[1] Ananda, M.P., Berstein, H., Bruce, R.W., et al. (1984) Autonomous Navigation of the Global Positioning System Satellite. AIAA Guidance and Control Conference, Seattle, 20-22 August 1984, 321-327.

[2] Codik, A. (1985) Autonomous Navigation of GPS Satellites—A Challenge for the Future. Proceedings of the ION 59th Annual Meeting, 32, 67-70.

[3] Ananda, M.P., Bernstein, H., Cunninggham, W.A., et al. (1990) Global Positioning System (GPS) Autonomous Navigation. IEEE Position Location & Navigation Symposium, 27, 497-508.
http://dx.doi.org/10.1109/PLANS.1990.66220

[4] Fliegel, H.F. and Gallini, T.E. (1996) Solar Force Modeling of Block IIR Global Positioning System Satellites. Journal of Spacecraft and Rockets, 33, 863-866.
http://dx.doi.org/10.2514/3.26851

[5] Rajan, J.A. (2003) On-Orbit Validation of GPS IIR Autonomous Navigation. Proceedings of the ION 59th Annual Meeting, Albuquerque, 9-12 September 2003, 411-419.

[6] Ghassemiand, K. and Fisher, S.C. (1999) GPS IIF—The Next Generation. Proceedings of the IEEE, 87, 24-47.

[7] Balbach, O., Eissfeller, B. and Hein, G.W. (1999) GPS Navigation of Geostationary Satellites Using GPS Block IIF Space Pointing Antennas. IONGPS’99, 14-17 September 1999, Nashville, 2335-2339.

[8] Podlesney, D. (2009) GPS III Space Segment. Official US Government, Washington DC.

[9] Lazar, S. (2002) Satellite Navigation: Modernization and GPS III Crosslink. The Aerospace Corporation Magazine of Advance in Aerospace Technology, 22, 42-53.

[10] 刘迎春, 刘林, 王昌彬. 关于星–星跟踪的定轨问题[J]. 紫金山天文台台刊, 2000, 19(2): 117-120.

[11] Menn, M.D. and Berstein, H. (1994) Ephemeris Observability Issues in the Global Positioning System Autonomous Navigation. Proceedings of IEEE in Position Location & Navigation Symposium, 1994, 677-680.

[12] 李博. 基于星间定向观测的导航星座长期自主定轨技术研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2010.

[13] Abusali, P.A., Tapley, B.D. and Schutz, B.E. (1998) Autonomous Navigation of Global Positioning System Satellites Using Cross-Link Measurements. Journal of Guidance, Control, and Dynamics, 21, 321-327.
http://dx.doi.org/10.2514/2.4238

[14] 尚琳, 刘国华, 刘善伍, 等. 地面锚固站消除自主导航中星座旋转误差的性能评估[C]. 第三届中国卫星导航年会, 广州, 2012.

[15] 杨力, 郭飞霄, 文援兰, 等. 单锚固站辅助导航星座自主定轨分析[J]. 飞行器测控学报, 2013, 32(5): 444-448.

[16] 尚琳, 任前义, 张锐, 等. 利用锚固站时序差分测量消除星座旋转误差[J]. 武汉大学学报: 信息科学版, 2013, 38(8): 920-924.

[17] 宋小勇. COMPASS导航卫星定轨研究[D]: [博士学位论文]. 西安: 长安大学, 2009.

[18] Eissfeller, B., Zink, T. and Wolf, R. (2000) Autonomous Satellite State Determination by Use of Two-Directional Links. International Journal of Satellite Communications, 18, 325-346.
http://dx.doi.org/10.1002/1099-1247(200007/10)18:4/5<325::AID-SAT680>3.0.CO;2-8

[19] 曾旭平. 导航卫星自主定轨研究及模拟结果[D]:[ 博士学位论文]. 武汉: 武汉大学, 2004.

[20] 刘林. 航天器轨道理论[M]. 北京: 国防工业出版社, 2000.

Top