集值优化问题的E-Henig真有效解
E-Henig Proper Efficient Solution for Set-Valued Optimization Problems
作者: 林佩静 , 仇秋生 :浙江师范大学,浙江 金华; 李茂旺 :江西冶金职业技术学院,江西 新余;
关键词: E-Henig真有效解; 标量化; 真鞍点; 对偶; E-Henig Proper Efficient Solution; Scalarization; Proper Saddle Point; Duality
摘要: 本文研究集值优化问题的E-Henig真有效解。首先,在实局部凸Hausdoff空间中引进了E-Henig真有效点的概念,给出了E-Henig真有效点的等价刻画,讨论了它与E-Benson真有效点和E-超有效点的关系。其次,在集值映射为近似E-次类凸的条件下,建立了E-Henig真有效解的标量化定理。最后,研究了E-Henig真有效解的鞍点定理和对偶定理。Abstract: In this paper, we study E-Henig proper efficient solution for set-valued optimization problem. Firstly, the concept of E-Henig proper efficient point in a real Hausdorff locally convex space is given. The relationships with E-Benson proper point and E-super point are discussed. Secondly, under the assumption of nearly subconvexlikeness, scalarization theorems of E-Henig proper efficient solution are established. Lastly, E-Henig saddle point theorem and E-Henig duality theorem are studied.
文章引用: 林佩静 , 李茂旺 , 仇秋生 (2016) 集值优化问题的E-Henig真有效解。 应用数学进展, 5, 494-504. doi: 10.12677/AAM.2016.53060
参考文献
[1]
Gutierrez, C., Jimenez, B. and Novo, V. (2006) A Unified Approach and Optimality Conditions for Approximate Solutions of Vector Optimization Problems. SIAM Journal on Optimization, 17, 688-710.
http://dx.doi.org/10.1137/05062648X
[2]
White, D.J. (1986) Epsilon Efficiency. Journal of Optimization Theory and Applica-tions, 49, 319-337.
http://dx.doi.org/10.1007/BF00940762
[3]
Loridan, P. (1984) ε-Solutions in Vector Minimization Problems. Journal of Opti-mization Theory and Applications, 43, 265-276.
http://dx.doi.org/10.1007/BF00936165
[4]
Chicco, M., Mignanego, F., Pusillo, L. and Tijs, S. (2011) Vector Optimization Problems via Improvement Sets. Journal of Optimization Theory and Applications, 150, 516-529.
http://dx.doi.org/10.1007/s10957-011-9851-1
[5]
Gutierrez, C., Jimenez, B. and Novo, V. (2012) Improvement Sets and Vector Optimization. European Journal of Operational Research, 223, 304-311.
http://dx.doi.org/10.1016/j.ejor.2012.05.050
[6] Zhao, K.Q., Yang, X.M. and Peng, J.W. (2013) Weak E-Optimal Solution in Vector Optimization. Taiwanese Journal of Mathematics, 17, 1287-1302.
[7]
Zhao, K.Q. and Yang, X.M. (2015) E-Benson Proper Efficiency in Vector Optimization. Optimization, 64, 739-752.
http://dx.doi.org/10.1080/02331934.2013.798321
[8]
Zhou, Z.A., Yang, X.M. and Zhao, K.Q. (2016) E-Super Efficiency of Set-Valued Optimization Problems Involving Improvement Sets. Journal of Industrial and Management Optimization, 12, 1031-1039.
http://dx.doi.org/10.3934/jimo.2016.12.1031
[9]
Qiu, Q.-S. (2007) Henig Efficiency in Vector Optimization with Nearly Cone-Subconvexlike Set-Valued Functions. Acta Mathematicae Applicatae Sinica, English Series, 23, 319-328.
http://dx.doi.org/10.1007/s10255-007-0374-3
[10]
Gong, X.H. (2005) Optimality Conditions for Henig and Globally Proper Efficient Solutions with Ordering Cone Has Empty Interior. Journal of Mathematical Analysis and Applications, 307, 12-31.
http://dx.doi.org/10.1016/j.jmaa.2004.10.001
[11]
Zalinescu, C. (2002) Convex Analysis in General Vector Spaces. World Scientific, Singapore.
http://dx.doi.org/10.1142/5021
[12] 仇秋生. 关于Henig真有效性[J]. 系统科学与数学, 2011, 31(4): 482-488.
[13]
Zhou, Z.A., Yang, X.M. and Peng, J.W. (2014) ε-Henig Proper Efficiency of Set-Valued Optimization Problems in Real Ordered Linear Spaces. Optimization Letters, 8, 1813-1827.
http://dx.doi.org/10.1007/s11590-013-0667-9
[14]
Gutiérrez, C., Jiménez, B. and Novo, V. (2012) Improvement Sets and Vector Optimization. European Journal of Operational Research, 223, 304-311.
http://dx.doi.org/10.1016/j.ejor.2012.05.050
[15]
Yang, X.M., Li, D. and Wang, S.Y. (2001) Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions. Journal of Optimization Theory and Applications, 110, 413-427.
http://dx.doi.org/10.1023/A:1017535631418