蒸发式冷凝器传热传质数值模拟研究
Numerical Simulation Investigation on Heat and Mass Transfer in Evaporative Condensers

作者: 尹应德 , 朱冬生 * , 孙晋飞 :中国科学院广州能源研究所,广东 广州;

关键词: 蒸发式冷凝器传热传质顺流逆流数值模拟Evaporative Condensers Unsaturated Evaporation Parallel Flow Counter Flow Numerical Simulation

摘要:
采用VOF法,建立二维水蒸气传热传质顺流和逆流的计算模型,计算所得的平均液膜厚度模拟值比实验测量值大3.03%~6.90%,比Nusselt理论的预测值大8.33%~10.34%,在合理的误差范围,说明该模型切实可行。运用该模型计算并分析水与空气顺流和逆流过程中,液态水的流动分布、空气与水流速度分布以及空气中水蒸气的质量含量分布情况,结果表明:在气–液两相逆流过程的气–液界面的总传热量中,潜热传热量所占比值在90%以上,比气–液两相顺流时高,在气–液相界面处是以水蒸发传质引起的潜热换热为主、温差引起的显热传热为辅的换热形式,逆流比顺流更有利于传热。

Abstract: The VOF (volume of fluid) method is used to establish a two-dimensional water vapor heat and mass transfer parallel flow and counter flow model. The deviation of calculated film thickness, which is changed with Re values, is greater than the experimental measurement’s value by 3.03% - 6.90%, and the predicted value of the Nusselt theory by 8.33% - 10.34%; it indicates that the model is feasible. The model is used to calculate and analyze liquid water flow distribution, air and water quality and velocity distribution, water vapor quality content distribution in the air, in water and air’s parallel flow and counter flow processes. The results show that: in gas-liquid two- phase counter flow process, the ratio of latent heat transfer rate in total heat transfer rate is above 90% at gas-liquid interface, higher than that of gas-liquid two-phase parallel flow; at air-liquid interface, the main heat transfer is latent heat transfer caused by water’s evaporation and mass transfer, and the supplemented heat transfer is sensible heat transfer caused by temperature difference; counter flow is more conducive to heat transfer than parallel flow.

文章引用: 尹应德 , 朱冬生 , 孙晋飞 (2016) 蒸发式冷凝器传热传质数值模拟研究。 电力与能源进展, 4, 136-145. doi: 10.12677/AEPE.2016.44018

参考文献

[1] Wanga, T., Shenga, C. and Agwu Nnanna, A.G. (2014) Research on Heat Exchange and Control Method of the Evaporative Condenser in the Equipment of Flax Fiber Modification. Energy and Buildings, 81, 435-443.

[2] Harby, K., Gebaly, D.R., Koura, N.S. and Hassan, M.S. (2016) Performance Improvement of Vapor Compression Cooling Systems Using Evaporative Condenser: An Overview. Renewable and Sustainable Energy Reviews, 58, 347- 360.
http://dx.doi.org/10.1016/j.rser.2015.12.313

[3] Chun, K.R. and Seban, R.A. (1971) Heat Transfer to Evaporating Liquid Film. Journal of Heat Transfer, 93, 391-396.
http://dx.doi.org/10.1115/1.3449836

[4] Seban, R.A. and Faghri, A. (1976) Evaporation and Heating with Turbulent Falling Liquid Films. Journal of Heat Transfer, 98, 315-318.
http://dx.doi.org/10.1115/1.3450542

[5] Debbissi, C., Orfi, J. and Nasrallah, S.B. (2003) Evaporation of Water by Free or Mixed Convection into Humid Air and Superheated Steam. International Journal of Heat and Mass Transfer, 46, 4703-4715.
http://dx.doi.org/10.1016/S0017-9310(03)00092-9

[6] Jabrallah, S.B., Belghithb, A. and Corriou, J.P. (2006) Convective Heat and Mass Transfer with Evaporation of a Falling Film in a Cavity. International Journal of Thermal Sciences, 45, 16-28.
http://dx.doi.org/10.1016/j.ijthermalsci.2005.05.001

[7] Feddaoui, M., Belahmidi, E., Mir, A. and Bendou, A. (2001) Numerical Study of the Evaporative Cooling of Liquid Film in Laminar Mixed Convection Tube Flows. International Journal of Thermal Sciences, 40, 1011-1020.
http://dx.doi.org/10.1016/S1290-0729(01)01286-8

[8] Feddaoui, M., Mir, A. and Belahmidi, E. (2003) Numerical Simulation of Mixed Convection Heat and Mass Transfer with Liquid Film Cooling along an Insulated Vertical Channel. Heat and Mass Transfer, 39, 445-453.

[9] Feddaoui, M., Mir, A. and Belahmidi, E. (2003) Cocurrent Turbulent Mixed Convection Heat and Mass Transfer in Falling Film of Water Inside a Vertical Heated Tube. International Journal of Heat and Mass Transfer, 46, 3497-3509.
http://dx.doi.org/10.1016/S0017-9310(03)00129-7

[10] Feddaoui, M., Meftaha, H. and Mir, A. (2006) The Numerical Compu-tation of the Evaporative Cooling of Falling Water Film in Turbulent Mixed Convection inside a Vertical Tube. International Com-munications in Heat and Mass Transfer, 33, 917-927.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.04.004

[11] Fiorentino, M. and Starace, G. (2016) Numerical Investigations on Two-Phase Flow Modes in Evaporative Condensers. Applied Thermal Engineering, 94, 777-785.
http://dx.doi.org/10.1016/j.applthermaleng.2015.10.099

[12] Hirt, C.W. and Nichols, B.D. (1981) Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 39, 201-206.
http://dx.doi.org/10.1016/0021-9991(81)90145-5

[13] 刘孺勋, 王志峰. 数值模拟方法和运动界面追踪[M]. 合肥: 中国科学技术大学出版社, 2001.

[14] Choudhury, D. (1993) Introduction to the Renormalization Group Method and Turbulence Modeling. Fluent Inc., Technical Memorandum TM-107.

[15] Brackbill, J.U., Kothe, D.B. and Zemach, C. (1992) A Continuum Method for Modeling Surface Tension. Journal of Computational Physics, 100, 335-354.
http://dx.doi.org/10.1016/0021-9991(92)90240-Y

[16] 余黎明. 气液传质过程的Marangoni效应研究[D]: [博士学位论文]. 天津: 天津大学研究院, 2005: 47-49.

[17] 张景卫. 板管蒸发式冷凝器流体流动及传热特性研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2008.

分享
Top