粒子群优化自适应最小二乘法的电网谐波估计
Estimation of Harmonics in Power Systems Based on Particle Swarm Optimized Recursive Least Square Model

作者: 帅士奇 , 江 辉 :深圳大学光电工程学院,广东 深圳 ; 彭建春 :深圳大学机电与控制工程学院,广东 深圳 ;

关键词: 电能质量谐波估计粒子群算法自适应最小二乘法Power Quality Harmonics Estimation Particle Swarm Optimization Recursive Least Square

摘要:
研究基于粒子群优化自适应最小二乘法的电网谐波估计方法,针对自适应最小二乘(Recursive Least Square, RLS)算法对初始值敏感的问题,本文利用粒子群(Particle Swarm Optimization, PSO)算法得到最优化的电网谐波参数即状态向量的权重初始值,再利用自适应最小二乘法(RLS)对电网谐波参数进行参数估计。对静态和动态的电压信号进行仿真分析,并比较了不同的噪声环境下参数估计效果,最后还应用本文所提方法对电网动态子谐波和间谐波进行了仿真分析。仿真结果表明,与可变约束最小二乘方法(VCLMS),遗传算法(GA)优化参数估计方法相比,本文所提方法估计效果更优。

Abstract: This paper presents a method for estimating harmonics in power systems based on particle swarm optimized recursive least square (PSO-RLS) model. The PSO is used to get the optimal initial weights and RLS is used to estimate parameters of harmonic signals. In this way, the method resolves the problem that RLS is sensitive to initial weights. This method is used to analyze both steady-state and dynamic voltage signals. And its performance is revealed by comparing results of difference noise environments. In addition, the dynamic sub harmonic and inter harmonics are analyzed using this method. Simulation results show the performance of the proposed method is better than the VCLMS and GA-RLS ones.

文章引用: 帅士奇 , 江 辉 , 彭建春 (2016) 粒子群优化自适应最小二乘法的电网谐波估计。 智能电网, 6, 199-221. doi: 10.12677/SG.2016.64023

参考文献

[1] 牛胜锁, 张达, 梁志瑞, 霍晓娣. 基于抗差总体最小二乘法的电力系统谐波状态估计[J]. 电力系统保护与控制, 2014, 28(4): 68-72.

[2] Zhu, T.X. (2007) Exact Harmonics/Interharmonics Calculation Using Adaptive Window Width. IEEE Transactions on Power Delivery, 22, 2279-2288.
http://dx.doi.org/10.1109/TPWRD.2007.899526

[3] 张静, 徐政. 基于卡尔曼误差的电能质量扰动检测[J]. 电力系统及自动化学报, 2006, 18(5): 25-30.

[4] 耿妍, 张瑞金. 自适应滤波算法综述[J]. 信息与电子工程, 2008, 6(4): 315-320.

[5] Bettayeb, M. and Qidwai, U. (2003) A Hybrid Least Squares GA Based Algorithm for Harmonic Estima-tion. IEEE Transactions on Power Delivery, 18, 377-382.
http://dx.doi.org/10.1109/TPWRD.2002.807458

[6] Lu, Z., Ji, T.Y., Tang, W.H. and Wu, Q.H. (2008) Optimalharmonic Estimation Using a Particleswarm Optimizer. IEEE Transactions on Power De-livery, 23, 1166-1174.
http://dx.doi.org/10.1109/TPWRD.2008.917656

[7] Mishra, S. (2005) A Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for Harmonic Estimation. IEEE Transactions on Evolutionary Computation, 16, 61-73.
http://dx.doi.org/10.1109/TEVC.2004.840144

[8] Ray, P.K. and Subudhi, B. (2012) BFO Optimized RLS Algorithm for Power System Harmonics Estimation. Applied Soft Computing, 12, 1965-1977.
http://dx.doi.org/10.1016/j.asoc.2012.03.008

[9] Singh, S. K., Sinha, N., Goswami, A.K. and Sinha, N. (2016) Robust Estimation of Power System Harmonics Using a Hybrid Firefly Based Recursive Least Square Algorithm. Electrical Power and Energy Systems, 80, 287-296.
http://dx.doi.org/10.1016/j.ijepes.2016.01.046

[10] Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Pro-ceedings of IEEE International Conference on Neural Networks, 4, 1942-1948.

[11] 付丽华, 边家文, 李志明, 等, 著. 谐波信号分析与处理[M]. 武汉: 中国地质大学出版社有限责任公司, 2013.

[12] Paulo S.R. Diniz, 著.自适应滤波算法与实现[M]. 第四版. 刘郁林, 等, 译. 北京: 电子工业出版社, 2014.

[13] 刘国海, 吕汉闻, 刘颖, 陈兆岭, 刘慧. 基于改进RLS算法的谐波电流检测方法[J]. 电力自动化设备, 2010, 30(10): 46-49.

[14] Bettayeb, M. and Qidwai. U. (1998) Recursive Estimation of Power System Harmonics. Electric Power Systems Research, 47, 143-152.
http://dx.doi.org/10.1016/S0378-7796(98)00063-7

分享
Top